Syllabus of 4 + 1 Year Integrated UG and PG Programme

w. e. f 2024-25 Academic Year

GRADUATE SCHOOL Mahatma Gandhi University P. D. Hills P O Kottayam, Kerala <u>www.gs.mgu.ac.in</u> <u>www.mgu.ac.in</u>

Schools offering Majors

SL.No	School/Centre
1	School of Bio Sciences
2	School of Chemical Sciences
3	School of Computer Sciences
4	School of Environmental Sciences
5	School of Gandhian Thought and Development Studies
6	School of International Relations and Politics
7	School of Pure and Applied Physics
8	School of Social Sciences

S1. No.	Major	Intake					
	SCIENCE						
1	Bio Sciences	6**					
2	Chemistry	6					
3	Computer Science	6					
4	Environmental Science	6					
5	Physics	6					
	SOCIAL SCIENCES						
1	Development Studies	5					
2	Gandhian Studies	5					
3	History	10					
4	International Relations and Politics	10					

Majors offered and Intake *1 seat shall be sanctioned over and above the intake in each major in the 3rd semester for students who opt for a change of major after two semesters.

**Progression to PG Shall be based on the specialization selected by students as Biochemistry (2 seats) Biotechnology (2 seats) and Microbiology (2 seats) based on merit.

Schools offering Minors/MDCs/AECs/VACs/SECs

SL.No	School/Centre
1	School of Artificial Intelligence And Robotics
2	School of Behavioural Sciences
3	School of Biosciences
4	School of Chemical Sciences
5	School of Computer Sciences
6	School of Data Analytics
7	School of Energy Materials
8	School of Environmental Sciences
9	School of Food Science And Technology
10	School of Gandhian Thought And Development Studies
11	School of Gender Studies
12	School of Indian Legal Thought
13	School of International Relations And Politics
14	School of Letters
15	School of Mathematics And Statistics
16	School of Nanoscience And Nano Technology
17	School of Pedagogical Sciences
18	School of Polymer Science And Technology
19	School of Pure And Applied Physics
20	School of Social Sciences
21	School of Tourism Studies
22	International and Inter University Centre for Nanoscience and Nanotechnology
23	K N Raj School of Economics

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University School of Chemical Sciences

Course Code	Title	Credits	Hours per Week		Level	Туре
			Theory	Practicals		
		SEMESTI	E R I			
MG1DSCUCY101	Fundamentals of Chemistry 1	4	4		Foundatio n (100- 199)	Major
MG1DSCUCH121	General Chemistry 1	4	4		"	Minor A
MG1DSCUCH141	Applied Chemistry 1	4	4		"	Minor B
MG1MDCUCH101	Science and Society	3	3		"	MDC
	AEC (Eng)	3	3		"	AEC
	AEC (Mal)	3			"	AEC
		SEMESTE	CR II			
MG2DSCUCY101	Fundamentals of Chemistry 2	4	3	1		Major
MG2DSCUCH121	General Chemistry 2	4	3	1		Minor A
MG2DSCUCH141	Applied Chemistry 1	4	4		<u> </u>	Minor B
MG2MDCUCH101	World of Chemistry	3	3		"	MDC
	AEC (Eng)	3	3		"	AEC
	AEC (Mal)	3	3		"	AEC
		SEMESTE	R III			
MG3DSCUCY201	Physical Chemistry	4	3	1	Intermedi ate (200- 299)	Major
MG3DSCUCY202	Organic Chemistry I	4	4			Major
MG3DSCUCY203	Inorganic Chemistry	4	4			Major
MG3DSCUCH221	Advanced Chemistry 1	4	4			Minor A
MG3MDCUCH201	The Fascinating world of Gels	3	3		"	MDC

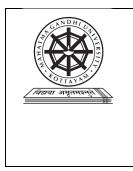
MG3VACUCH201	Chemistry for Sustainable Society	3	3			VAC
		SEMES	TER IV			
MG4DSCUCY201	Inorganic and Physical Chemistry	4	4			Major
MG4DSCUCY202	Organic Chemistry II	4	4			Major
MG4DSCUCY203	Spectroscopic methods in Chemistry	4	4			Major
MG4DSCUCH241	Analytical Chemistry	4	4			Minor B
MG4SECUCH201	Basic Computation Skills for Science	3	3			SEC
MG4VACUCH201	Sustainable Chemical approaches	3	3			VAC
MG4INTUCY201	Internship/Fieldwork	2	2			
		SEMES	STER V			
MG5DSCUCY301	Inorganic Chemistry	4	4		Higher (300-399)	Major
MG5DSCUCY302	Organic Chemistry III	4	4			Major
MG5DSCUCY303	Physical Chemistry	4	4			Major
MG5DSCUCY304	Practical Chemistry	4		4		Major
MG5SECUCH301	Research skills and scientific data analysis	3	3		"	SEC
MG5VACUCH301	Chemistry of Aesthetic	3	3		"	VAC
		SEMES	TER VI			
MG6DSCUCY301	Inorganic and Physical Chemistry	4	4		.د	Major
MG6DSCUCY302	Organic Chemistry IV	4	4			Major
MG6DSCUCY303	Polymer Chemistry	4	4			Major
MG6DSEUCY301	Natural Polymer Chemistry	4	4			Major (E)
MG6DSEUCY302	Chemistry of materials					
MG6DSEUCY303	Medicinal Chemistry	-				

MG6DSEUCY304	Heterocyclic Chemistry	4	4		Major (E)
MG6DSEUCY305	Polymer composites: From macro to nano scale				
MG6DSEUCY306	Electrochemical Energy storage and conversion devices				
MG6VACUCH301	Academic and Scientific Presentation	3	3		SEC
Total Credits		133			

SEMESTER VII						
MG7DSCUCY401	Advanced Topics in Chemistry 1	4	4	Advanc ed (400- 499)	Major	
MG7DSEUCY401	Polymer blends	4	4		Major (E)	
MG7DSEUCY402	Nanomaterials Synthesis & Device	-				
MG7DSEUCY403	Photochemistry and pericyclic reactions	-				
MG7DSEUCY404	Biochemistry	-				
MG7DSEUCY405	Polymer additives and Compounding	4	4		Major (E)	
MG7DSEUCY406	Advanced Characterization Techniques	-				
MG7DSEUCY407	Transition metals in chemical synthesis	-				
MG7DSCUCH421	Advanced Chemistry	4	4		Minor A/B	
MG7DSEUCH421	Polymer blends	4	4	"	Minor A/B (E)	
MG7DSEUCH422	Nanomaterials Synthesis & Device					

MG7DSEUCH423	Photochemistry and pericyclic reactions					
MG7DSEUCH424		-				
WUU/DSEUCH424	Biochemistry					
MG7DSEUCH425	Polymer additives and	4	4		"	Minor A/B
	Compounding					(E)
MG7DSEUCH426	Advanced	_				
	Characterization					
	Techniques					
MG7DSEUCH427	Transition metals in	-				
	chemical synthesis					
	SI	EMESTI	CR VIII			
MG8DSCUCY401	Advanced Topics	4	4		"	Major
	Chemistry in 2					
MG8DSEUCY402	Solar Energy-Advanced	4	4		"	Major (E)
	Materials for					
	Photovoltaics					
MG8DSEUCY403	Chemistry of natural	-				
	products					
MG8DSEUCY404	Supramolecular	-				
	chemistry					
MG8DSEUCY405	Polymer processing	-				
MG8DSEUCY406	Polymer testing	-				
MG8RPHUCY400	Research Project	12				
MG8DSCUCY407	Advanced Inorganic	4	4			Major*
	Chemistry					
MG8DSCUCY408	Advanced Physical	4	4			Major*
	Chemistry					
MG8DSCUCY409	Advanced Organic	4	4		"	Major*
	Chemistry					
То	tal Credits	44				
		SEMEST	ER IX			
				T	1	1 .
MG09DSCUCY501	Advanced Organic	4	4		PG	Major
	Synthesis				Level (500-	

					599)	
MG09DSCUCY502	Theoretical and Computational Chemistry	4	4			Major
MG09DSCUCY503	Research Methodology and Ethics	4	4			Major
MG09DSCUCY504	Analytical Chemistry	4	4		"	Major
MG09DSCUCY505	Advanced Chemistry	4		4	۰۵	Major
	Practical's					
		SEMESTE	RX			
MG10RPHUCY500	Research Project	20			۲۲	
	Major**	4			"	
	Major**	4			"	
	Major**	4			"	
	Major**	4			"	
	Major**	4			"	
Total Credits		40				


*Only for 4-Years Honours Students

**Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level	Foundation	Intermediate	Highe	Advance	PG
	(100-199	(200-299)	r	d (400-	Level
			(300-	499)	(500-
			399)		599)
			Ĺ		

Туре	Major	Minor	MDC	SEC	VAC	AEC

MAHATMA GANDHI UNIVERSITY Graduate School

4 + 1 Integrated UG and PG Programme

School	School of Chemical Scie	nces				
Programme	4 + 1 Integrated UG and	4 + 1 Integrated UG and PG Programme				
Course Title	Fundamentals of Chemis	stry 1				
Course Type	Major (Discipline-specifi	c foundatio	n course)			
Course Level	100-199					
Course Code	MG1DSCUCY101					
Course Overview	Fundamentals of Chemistry is a foundation-level course and it equips the students with the knowledge of basic chemistry concepts for entry to learn various advanced topics in all branches of chemistry. The course covers the evolution of chemistry and its significance, fundamental themes of the atomic structure, properties, states of matter and carbon compounds. Students explore the chemical bonding and chemical & physical properties of elements based on the periodic table. Students learn about how the properties of different states of matter evolved, from a molecular level. Students will also learn to name any organic compounds and predict their properties based on					
Semester	the type of carbon bond.	Credit	4			
Total Student Learning Time	Instructional hours for theory 60		actional hours for cal/lab work/field work			
Pre-requisite	Should know fundamental particles (electron, proton, neutron), charge, Bohr atomic model, the periodic table, catenation in carbon and difference between solid, liquid and gas					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand modern chemistry's basic facts, principles, theories, and methods.	R, U	
2	Apply atomic models to forecast and explain electronic configurations, atomic behaviour, and characteristics.	R, U, A	
3	Analyse periodic trends, the relationship between electronic configuration and the chemical reactivity of elements, including the formation of chemical bonds.	A, An	
4	Describe the relevance of organic chemistry, able to remember and name organic compounds and can predict their physical as well as chemical properties	R, A	
5	Describe the fundamental principles governing the behaviour of different states of matter.	U	
6	Compare the properties of solids, liquids, and gases and evaluate them based on real-life conditions.	Е	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S))

COURSE CONTENT

Module 1: Chemistry a Colourful Sciences	Hours	CO No
Definition of Science. Scientific methods - hypothesis- experiment – theory – law. Evolution of Chemistry- Early form of chemistry -alchemy, the origin of modern chemistry. Chemistry as a central science - Branches of chemistry. Interdisciplinary areas involving chemistry- Nanotechnology and biotechnology. Basic concepts in medicinal and pharmaceutical chemistry as well as methods of pharmaceutical and biomedical analysis: Drug discovery and development process, Review of organic functional groups found in drug molecules.	12	1
Module 2: Introduction to Atomic Structure and Bonding	Hours	
Atomic structure : The Atomic theory of matter, Discovery of atomic structure, Electromagnetic radiation – wave and particle nature, Planck's Quantum Theory, Black body radiation, Photoelectric	16	2,3

Chemical bonding : Lewis's symbol, Octet rule, Ionic bond – Lattice enthalpy, Born-Lande equation, Born- Haber cycle, Covalent bond- Strengths and Length, Resonance, Dipole moment, Fajan's rule, Co-ordinate bond, Hydrogen bonding. The Valence Shell Electron Pair Repulsion Theory (VSEPR), Molecular geometry, Orbital Overlap, Hybridization, Valence Bond Theory (VBT), and Molecular Orbital Theory (MOT). Periodic table- classification of elements and properties : Development of Periodic table, Block elements- s, p, d and f block, Periodicity, Structure and properties Alkali and alkaline earth metals, p- block elements- B, C, N, P and O family oxoacids of Sulphur and Halogens, Noble gases, Chemical properties, Diagonal relationship, biological importance of Na, K, Ca and Mg. Transition elements -Lanthanides and Actinides,		
Module 3: Organic Chemistry for Beginners	Hours	
IUPAC nomenclature: Alkanes, cyclo-alkanes, alkenes, alkynes, halogen compounds, Functional groups and structural diversity, Conformational analysis: alcohols, ethers, aldehydes, ketones, carboxylic acids, nitro compounds. Hybridization and Geometry of Molecules: methane, ethane, ethylene, acetylene. Electronic Effects: Inductive, resonance,	16	4
hyperconjugation, and steric effect. Concepts of acidity: Acids and bases. Nucleophiles and electrophiles. Cleavage of bonds: homolytic and heterolytic C-C bond fission. Reaction Intermediates and their stability: carbocations, carbanions, and free radicals. Polymers and Macromolecules		
acidity: Acids and bases. Nucleophiles and electrophiles. Cleavage of bonds: homolytic and heterolytic C-C bond fission. Reaction Intermediates and their stability: carbocations, carbanions, and free	Hours	

Mode of	Classroom activities: Recitation, Seminar, Quiz	
Transaction	Field activities:	
Lab-based activities:		
Mode of	1. Continuous Internal Assessment (CIA)	
Assessment	Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination	

1. P. Atkins, T. Overton, J. Rourke, F. Armstrong, and M. Hagerman, Shriver and Atkins' Inorganic Chemistry, 5ed, W. H. Freeman and Company New York, 2009.

2. G. L. Miessler and D. A. Tarr, Inorganic Chemistry, 3rd ed., Pearson, 2008.

3. J. E. House, Inorganic Chemistry, 3rd ed., Academic Press, 2019.

4. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry –

Principles of Structure and Reactivity, 4th ed., Pearson Education, 2006. 5. J. M. McIintosh, Organic Chemistry Fundamentals and Concepts, 2nd Edn., De Gruyter, 2022

6. T. W. G. Solomons, C. B. Fryhle and S. A. Snyder, Solomons' Organic Chemistry, Global Edn., 12th Edn., Wiley International, 2024

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of discipline-specific foundation courses. Students will be empowered with the basic knowledge of chemistry and its significance in the modern world.

Tarra Styrutar	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	General Chemistry 1		
Course Type	Minor		
Course Level	100-199		
Course Code	MG1DSCUCH121		
Course Overview	MG1DSCUCH121 General Chemistry 1 is a foundation-level course and it equips the students with the knowledge of basic chemistry concepts for entry to learn various advanced topics in all branches of chemistry. The course covers the evolution of chemistry and its significance, fundamental themes of the atomic structure, properties, states of matter and carbon compounds. Students explore the chemical bonding and chemical & physical properties of elements based on the periodic table. Students learn about how the properties of different states of matter evolved, from a molecular level. Students will also learn to name any organic compounds and predict their properties based on the type of carbon bond.		
Semester	1	Credit	4

Total Student Learning	Instructional hours for theory	Instructional hours for practical/lab work/field work	
Time	60		
Pre-requisite	,. <u> </u>	al particles (electron, proton, tomic model, the periodic table, difference between solid, liquid	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand the basic facts, principles, theories, and methods of modern chemistry.	R, U	
2	Apply atomic models to forecast and explain electronic configurations, atomic behaviour, and characteristics.	R, U, A	
3	Analyse periodic trends, the relationship between electronic configuration and the chemical reactivity of elements, including the formation of chemical bonds.	A, An	
4	Describe the relevance of organic chemistry, able to remember and name organic compounds and can predict their physical as well as chemical properties	R, A	
5	Describe the fundamental principles governing the behaviour of different states of matter.	U	
6	Compare the properties of solids, liquids, and gases and evaluate them based on real-life conditions.	Ε	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S))

COURSE CONTENT

Module 1: Chemistry a Colourful Sciences	Hours	CO No
Definition of Science. Scientific methods - hypothesis- experiment – theory – law. Evolution of Chemistry- Early form of chemistry -alchemy, the origin of modern chemistry. Chemistry as a central science - Branches of chemistry. Interdisciplinary areas involving chemistry- Nanotechnology and biotechnology. Basic concepts in medicinal and pharmaceutical chemistry as well as methods of pharmaceutical and biomedical analysis: Drug discovery and development process, Review of organic functional groups found in drug molecules.	12	1
Module 2: Introduction to Atomic Structure and Bonding	Hours	
Atomic structure : The Atomic theory of matter, Discovery of atomic structure, Electromagnetic radiation – wave and particle nature, Planck's Quantum Theory, Black body radiation, Photoelectric effect, Dual behaviour, Bohr's model for Hydrogen atom and its limitations – Stark and Zeeman effect. Chemical bonding : Lewis's symbol, Octet rule, Ionic bond – Lattice enthalpy, Born-Lande equation, Born- Haber cycle, Covalent bond- Strengths and Length, Resonance, Dipole moment, Fajan's rule, Co-ordinate bond, Hydrogen bonding. The Valence Shell Electron Pair Repulsion Theory (VSEPR), Molecular geometry, Orbital Overlap, Hybridization, Valence Bond Theory (VBT), and Molecular Orbital Theory (MOT). Periodic table- classification of elements and properties : Development of Periodic table, Block elements- s, p, d and f block, Periodicity, Structure and properties Alkali and alkaline earth metals, p- block elements- B, C, N, P and O family oxoacids of Sulphur and Halogens, Noble gases, Chemical properties, Diagonal relationship, biological importance of Na, K, Ca and Mg. Transition elements -Lanthanides and Actinides	16	2,3
Module 3: Organic Chemistry for Beginners	Hours	
IUPAC nomenclature: Alkanes, cyclo-alkanes, alkenes, alkynes, halogen compounds, Functional groups and structural diversity, Conformational analysis: alcohols, ethers, aldehydes, ketones, carboxylic acids, nitro compounds. Hybridization and Geometry of Molecules: methane, ethane, ethylene, acetylene. Electronic Effects: Inductive, resonance,	16	4

hyperconjugation, and steric effect. Concepts of acidity: Acids and bases. Nucleophiles and electrophiles. Cleavage of bonds: homolytic and heterolytic C-C bond fission. Reaction Intermediates and their stability: carbocations, carbanions, and free radicals. Polymers and Macromolecules		
Module 4: Understanding States of Matter	Hours	
Gases: The gas laws; the ideal gas equation; Gas mixtures and partial pressures; Gas mixtures and partial pressures; kinetic-molecular theory of gases; molecular effusion and diffusion; real gases. Liquid: A molecular comparison of gases, liquids, and solids; intermolecular forces, select properties of liquids; phase changes; vapour pressure, Phase diagrams; liquid crystals. Solids: Bonding in solids; structures of solids, unit cells; classification of solids; metallic bonding; ionic solids; molecular Solids: covalent-network solids	16	5,6

Mode of	Classroom activities: Recitation, Seminar, Quiz
Transaction	Lab-based activities
Mode of	1. Continuous Internal Assessment (CIA)
Assessment Internal Test	
	 Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination

1. P. Atkins, T. Overton, J. Rourke, F. Armstrong, and M. Hagerman, Shriver and Atkins' Inorganic Chemistry, 5ed, W. H. Freeman and Company New York, 2009.

2. G. L. Miessler and D. A. Tarr, Inorganic Chemistry, 3rd ed., Pearson, 2008.

3. J. E. House, Inorganic Chemistry, 3rd ed., Academic Press, 2019.

4. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry -

Principles of Structure and Reactivity, 4th ed., Pearson Education, 2006.

5. J. M. McIintosh, Organic Chemistry Fundamentals and Concepts, 2nd Edn., De Gruyter, 2022

6. T. W. G. Solomons, C. B. Fryhle and S. A. Snyder, Solomons' Organic Chemistry, Global Edn., 12th Edn., Wiley International, 2024

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of foundation courses. Students will be empowered with the basic knowledge of chemistry and its significance in the modern world.

54	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Scier	ices	
Programme	4 + 1 Integrated UG and	PG Programm	ne
Course Title	Applied Chemistry 1		
Course Type	Minor		
Course Level	100-199		
Course Code	MG1DSCUCH141		
Course Overview	Applied Chemistry-1 course gives an overview of key areas which influence the day-to-day activities of the society. The students get general information about various industries such as fuel, fertilizer, pesticide, polymer and pharma industries, etc. The students get an idea about the origin of various chemical products they use in daily life. Students will also learn about natural resources, environmental contamination, occupational health and safety, risk management, and environmental toxicology.		
Semester	1	Credit	4
Total Student Learning Time	Instructional hours for theory 60		tional hours for al/lab work/field work
Pre-requisite	Should be familiar with va medicine, fuel, etc)	rious consum	able products (like

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand the significance of sustainability and the need to keep the environment free of pollution.	R, U	
2	Remember different chemicals and their uses and how they can be specifically applied to enhance the quality of life.	R, U, A	
3	Will get detailed knowledge regarding the significance of petroleum and petrochemicals in the modern world.	A, An	
4	Will get an overview of various types of polymers used in the modern world and get familiarized with the significance of polymer recycling.	R, A	
5	Realialize how chemistry has helped to develop modern medicines.	U	
6	Will be able to analyze the specific relation between the structure/chemistry of the drug to their pharmacological activity.	E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (Àn), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1: Industrial Chemistry	Hours	CO No
Sustainable use of- chemical feedstocks, water, energy. Environmental pollution control. Industrial Processes in practice: Basic chemical data, Flow charts; chemical process selection, design, and operation, Plant location, safety, construction of plant, process system engineering. Fuel Industries: Calorific value, the modern concept of fuels, classification, criteria for selection, comparison of gas, liquid, and solid fuels, properties, methods of processing various fuels, solid fuels, and Gaseous fuels. Agrichemical Industries: Fertilizers – Fertilizer type, need for fertilizer, essential requirements, plant nutrients and regulators, soil fertility, pH of the soil, classification of fertilizer, natural fertilizers, nitrogenous fertilizer, Phosphate fertilizers, NPK fertilizers, the effect of fertilizer- pollution. Insecticides classification, DDT, BHC, Gammexane, Endosulfan.	12	1

Module 2: Petrochemistry	Hours	
Origin and formation of petroleum, Composition, Characteristics, Constituents of Petroleum or crude oil. Types of Hydrocarbons and Non- hydrocarbons present in petroleum, their physical and chemical properties. Salty crude oil, sweet and sour crude oil. Classification of crude oil and natural gas: Characterization factor, Correlation index. Primary raw material for petrochemicals: Introduction to paraffinic hydrocarbons, olefinic hydrocarbons, dienes, and aromatic hydrocarbons with their properties. uses as building blocks for various petrochemicals. Module 3: Polymer Chemistry	16 Hours	2,3
Rubber, Plastics, and Fibres – Introduction,		4
Viscoelasticity, Tg, Tm, and Crystallinity. Polymer: A wonder material – Specialty polymers – Engineering plastics – Self-curing polymers – Shape memory polymers – Polymer blends-composites – Nanocomposites –Synthetic and natural biopolymers – Polymer waste management and recycling – Applications of polymers (Engineering-Packaging- Biomedical-Electronic-Space-Automotive)	10	
Module 4: Pharmaceutical Chemistry	Hours	
Development of medicinal chemistry, Basic principles, Basic terminology in drug discovery, MIC, Efficacy, Adsorption, Distribution, Metabolism, Excretion, Drug and disease classification, drug targets, Pharmacology, Pharmacokinetics, Generic and trade names, Lipinski rule, Dose-response curves-Stages in drug discovery, SAR, Natural and synthetic drugs, Introduction to Process Chemistry. Cancer research: Anti-cancer-agents, Antibiotics: Penicillins, Tetracyclines, and Quinolones, Basic knowledge of TB and its treatment, Viral and fungal diseases, Analgesics and Anti-inflammatory drugs-NSAIDS, Proton pump inhibitors: Hyperacidity, Peptic Ulcer disease (PUD), Gastroesophageal reflux disease (GERD), Cardiovascular diseases: Hypertension, Cardiovascular drugs-Statin drugs, ACE inhibitors, Calcium channel inhibitors, Cholesterol absorption inhibitors	16	5,6

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz Field activities:			
	Lab-based activities:			
Mode of	1. Continuous Internal Assessment (CIA)			
Assessment	Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination			

1. P. Atkins, T. Overton, J. Rourke, F. Armstrong, and M. Hagerman, Shriver and Atkins' Inorganic Chemistry, 5ed, W. H. Freeman and Company New York, 2009.

2. G. L. Miessler and D. A. Tarr, Inorganic Chemistry, 3rd ed., Pearson, 2008.

3. J. E. House, Inorganic Chemistry, 3rd ed., Academic Press, 2019.

4. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry – Principles of Structure and Reactivity, 4th ed., Pearson Education, 2006.

5. J. M. McIintosh, Organic Chemistry Fundamentals and Concepts, 2nd Edn., De Gruyter, 2022

6. T. W. G. Solomons, C. B. Fryhle and S. A. Snyder, Solomons' Organic Chemistry, Global Edn., 12th Edn., Wiley International, 2024

Relevance of Learning the Course/ Employability of the Course

Applied Chemistry course can help students to work in many designated roles such as Chemistry Content Writer, Scientific Data Entry Specialist, Chemical Business Analyst, Quality Assurance, etc.

FREETER SPECTRE	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Scie	nces		
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Science and Society			
Course Type	MDC			
Course Level	100-199			
Course Code	MG1MDCUCH101			
Course Overview	This multidisciplinary course aims to provide a critical understanding for learners of the significance of science in society and vice-versa. The syllabus covers the history of science, developments of sciences, and approaches in science. The syllabus also deals with various processes and approaches adopted in scientific research. Finally, consciousness about scientific ethics is also discussed. This course further offers the prospects for understanding the contemporary trends and growth in diverse fields of scientific research. After completion of this course, students will be able to correlate the mutual relationship and significance between science and society.			
Semester	1	Credit	3	
Total Student Learning Time	Instructional hours for theory 54		tional hours for al/lab work/field work	
Pre-requisite	Should be familiar with va medicine, fuel, etc)	rious consum	able products (like	

CO No.	Expected Course Outcome	Learning Domains	PSO No.	
	Upon completion of this course, students will be able to ;			
1	To acquire a concrete understanding of the importance of scientific knowledge and its implications in society.	U, An, A		
2	To provide sufficient knowledge about the history of major scientific discoveries and developments.	R, U, E, A		
3	To understand the peculiarities of scientific approaches.	U, A		
4	To Correlate the relationship between scientific and social developments in mankind.	An, E		
5	To outline the basic steps in scientific research.	U, A		
6	To develop critical thinking and reasoning ability and to impart scientific ethics among learners.	A, U, An, E, S		

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1: The History of Science	Hours	CO No
Ancient civilization in India, China, Babylon, Egypt, Greece, Rome, Aristotelian views, Archimedes, The Copernican revolution, Contributions of Galileo, Louis Pasteur, Newton, Einstein, Linus Pauling, Developments and Revolutions in various branches of science, The evolution of modern Science and Technology, Science in the twenty-first century.	10	1
Module 2: The Scientific Approach	Hours	
Process of science and the nature of scientific knowledge. Ideas in science: Research Process, hypotheses, theories, and laws. The process of science beyond methods: Science as a creative human activity and art, creativity in science. Reasoning and Critical thinking, Affective and Cognitive strategies, Science and Knowledge, Beliefs and superstitions, Justification, Scientific temper.	10	2,3

Module 3: The Practice of Science	Hours	
Research methods: Identification of a problem, determination of methodology, literature survey, mode of approach of actual investigation, drawing influences from data, qualitative and quantitative analysis, assessing the status of the problem, results and conclusions, presenting a scientific seminar, abstraction of the research paper, publication of research paper, e-journals, art of writing a thesis. Science Communication: Conventional and Social media role, internet and its applications, Scientific controversies.	20	4
Module 4: Scientific ethics	Hours	
Verifiability and reproducibility, Plagiarism, IPR, Cyber laws, Internet security	14	5,6

Mode of	Classroom activities: Recitation, Seminar, Quiz			
Transaction	Field activities:			
	Lab-based activities:			
Mode of	1. Continuous Internal Assessment (CIA)			
Assessment	Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination			

1. J. S. Avery, Science and Society, World scientific

Suggested Reading

- 1. J. D. Bernal, Science in history, 1-4 Volumes, MIT Press, Cambridge, 1971.
- 2. W. Durant, The Story of Civilization, Simon and Schuster Publishers, United States, 1975
- 3. B. Russell, The Scientific Outlook, Routledge Classics, United Kingdom, 2009
- 4. K. Sujatha, S. Kurien, Evolution of the Philosophy of Science-Literary Perspectives, Ane Books Pvt. Ltd, 2011.
- 5. G. Gammow, One, two, three...infinity, Dover Publications, INC, NewYork, 1974
- 6. T. Crump, A Brief History of Science, Universities Press, 2001.7. B. N. Ghosh, Lectures on Scientific Method, Sterling, 1986.

Relevance of Learning the Course/ Employability of the Course

MAHATMA GANDHI UNIVERSITY Graduate School

4 + 1 Integrated UG and PG Programme

School	School of Chemical Scie	nces		
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Fundamentals of Chemistry 2			
Course Type	Major (Discipline-specific foundation course)			
Course Level	100-199			
Course Code	MG2DSCUCY101			
Course Overview	Fundamentals of Chemistry 2 is a foundation-level course and it equips the students with the knowledge of basic Quantum mechanics and its application in chemical bonding. The course also covers the concepts of acid-base theory. Stereochemistry gives an overview of the structure of organic molecules, and how to distinguish between different types of isomers, including enantiomers and diastereomers. Students will be introduced to chemical thermodynamics and will get familiarized with physical concepts such as work, heat, enthalpy, entropy etc. Students will be introduced to the chemistry lab where they learn about various safety aspects and hazards associated with chemicals, MSDS etc. Students will learn to carry out fundamental experiments such as finding boiling points, melting points, calibrating instruments etc.			
Semester	1	Cred		4
Total Student Learning Time	Instructional hours for theoryInstructional hours for practical/lab work/field work60			
Pre-requisite	Should know fundamental particles (electron, proton, neutron), charge, Bohr atomic model, the periodic table, and basic organic chemistry including naming organic compounds. Students should be aware of basic physical			

concepts like work, energy etc. Should know about
various laboratory glasswares.

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;	•	
1	Understand the fundamentals of quantum mechanics and explain chemical bonding based on the theories of quantum mechanics.	R, U	
2	Compare the relative strengths of acids and bases, and the different factors affecting acidity and basicity	R, U, A	
3	Identify stereogenic centres in organic molecules, and distinguish between different types of isomers, including enantiomers and diastereomers	A, An	
4	Understand principles of classical thermodynamics and apply them to analyze systems and thermodynamic cycles	R, A	
5	Understand the various hazards associated with chemicals. Applying this knowledge for handling and disposing of chemicals	RUA	
6	Develop the necessary skills to work in a chemistry lab.	S	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1: Basic Inorganic Chemistry	Hours	CO No
Quantum mechanical model of atom and bonding: Dual behaviour of matter, Heisenberg's Uncertainty Principle, double slit experiments, Classical wave equation, Schrödinger equation, Operators, Postulates of quantum mechanics, Particle-in-a-box, Schrödinger equation for the hydrogen atom, Qualitative description of many-electron systems, concepts of orbitals and quantum numbers. Shapes of orbitals, Aufbau principle, Pauli's exclusion principle, Hund's rule of maximum multiplicity, Valence bond and molecular orbital descriptions of bonding, Linear combination of atomic orbitals (LCAO) approach,	16	1

Hybridization and Bonding. Bonding in homonuclear and heteronuclear diatomic molecules, Bond orders.		
Chemistry of Solid: Classification of solids, Classification of crystalline solids, Crystal lattices and unit cell, seven crystal systems, Bravais's lattices, Number of atoms in a unit cell, packing in solids, Packing efficiency, Density of unit cell, Imperfection in solids, Crystal directions and planes, Crystal diffraction – Bragg's law, Electrical and Magnetic properties		
Oxidation and reduction: Reduction potential; electrochemical series, Redox reactions Balancing of redox equations, Factors affecting redox stability, Frost diagrams for redox reactions, Ellingham diagram and extraction of elements.		
Acids and bases: Arrhenius concept, solvent systems, Brønsted concept, Lux-Flood concept and Lewis's concept; HSAB principle, Superacid, Relative strengths of acids, Acid-base neutralization curves and indicators.		
Module 2: Basics of Stereochemistry	Hours	
Introduction, Concept of Isomerism, Classification of Stereoisomers, Optical Isomerism, Chirality & Elements of Symmetry, Wedge formula, Fischer projection, Newmann projection. Relative and absolute configurations, sequence rules, D & L, R & S systems of nomenclature. Understanding with examples for Enantiomers, mesoform, erythro/threo	16	2,3
forms, diastereoisomers, inversion, retention, and racemization. Conformational understanding with an example of ethane, n-butane, Cyclohexane and Decalin.		
racemization. Conformational understanding with an example of ethane, n-butane, Cyclohexane and	Hours	
racemization. Conformational understanding with an example of ethane, n-butane, Cyclohexane and Decalin.	Hours 12	4

	1	
various equilibrium constants Kp, Kc and Kx (using chemical potential).		
Ionic Equilibria: pKa, pKb and pH – Buffer solutions. Mechanism of buffer action – Buffer index – Henderson equation – Applications of buffers - Hydrolysis of salts of all types – Degree of hydrolysis – Hydrolysis constant and its relation with Kw - Solubility product and common ion effect.		
Module 4: Basic Chemistry Laboratory Practices	Hours	
Laboratory orientation and safety protocols Safe lab practices-PPE, Fire and electrical safety. Chemicals and solvents-Storage and handling, Material Safety Data Sheet (MSDS), Special precautions for hazardous chemicals usage. Segregation and disposal of chemicals-sodium and broken mercury thermometer. Introduction to glassware and equipment in the lab and their working. Emergency response and evacuation- chemical spills, gas leakage and fire. Simple first aids: Electric shocks, fire, cut by glass and inhalation of poisonous gases - Accidents due to acids and alkalis - Burns due to phenol and bromine. Scientific ethics in lab-working individually and in a team. Maintaining lab record, Cleanliness and punctuality. 2. Basic principles & experiments related to sample/reagent preparation: practical concept of Molarity, Molality, Normality, equivalence, weight %, vol.%, Preparation of standard solutions, Dilution 0.1 M to 0.001 M solutions. 3. Calibration and use of Electronic Balances, thermometer (using 80-82 °C; Naphthalene, 113.5- 114 °C; Acetanilide, 132.5-133°C; Urea, 100 °C; Distilled Water), melting point apparatus (Naphthalene 80-82 °C, Benzoic Acid 184.5-185 ° C, Cinnamic Acid 132.5-133 °C, Salicylic Acid 157.5-158 °C Acetanilide 113.5-114 °C, m-Dinitrobenzene 90 °C p-Dichlorobenzene 52 °C, Aspirin 135 °C) Determination of Boiling Point- Ethanol 78 °C, Cyclohexane 81.4 °C, Toluene 110.6 °C. Working principle of separating funnel, distillation setup, centrifuge, hot air oven, magnetic stirrer, rotary evaporator. 4. Separating homo and heterogeneous mixtures- Filtration, Concentration, Evaporation, recrystallisation, sublimation, separating funnel, distillation, chromatography.	16	5,6

Mode of	Classroom activities: Recitation, Seminar, Quiz
Transaction	Field activities:
	Lab-based activities:
Mode of	1. Continuous Internal Assessment (CIA)
Assessment	Internal Test
	 Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination 4. Viva

1. D. A. McQuarrie, Quantum Chemistry, Viva Student ed., Viva, 2011.

2. P. Atkins, J. de Paula and J. Keeler, Atkins' Physical Chemistry, 11th ed., OUP, 2018.

3. J. Barrett, Structure and Bonding, Wiley-Royal Society of Chemistry, 2002.

4. T. Engel and P. Reid, Physical Chemistry, 3rd ed., Pearson, 2013.

5. R. J. Silbey, R. A. Alberty and M. G. Bawendi, Physical Chemistry, 4th ed., Wiley Student ed., 2006.

6. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry –
Principles of Structure and Reactivity, 4th ed., Pearson Education, 2006.
7. T. W. G. Solomons, C. B. Fryhle and S. A. Snyder, Solomons' Organic

Chemistry, Global Edn., 12th Edn., Wiley International, 2024 8. D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, 3rd Edn., New age international, 2018

9. P. S. Kalsi, Stereochemistry: Conformation and Mechanism, 11th Edn., New Age International, 2022

10. Experiments in General chemistry, C. N. R. Rao and U. C. Agarwal

11. Vogel's Textbook of Practical Organic Chemistry (5th Edition)

12. Vogel's Inorganic Practical Chemistry

Relevance of Learning the Course/ Employability of the Course It is very relevant in terms of discipline-specific foundation courses. Students will be empowered with the basic knowledge of chemistry and its

significance in the modern world.

Parrel Sugarument	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Science	s	
Programme	4 + 1 Integrated UG and PG	Programme	
Course Title	General Chemistry 2		
Course Type	Minor		
Course Level	100-199		
Course Code	MG2DSCUCH121		
Course Overview	General Chemistry 2 is a foundation-level course and it equips the students with the knowledge of basic Quantum mechanics and its application in chemical bonding. The course also covers the concepts of acid-base theory. Stereochemistry gives an overview of the structure of organic molecules, and how to distinguish between different types of isomers, including enantiomers and diastereomers. Students will be introduced to chemical thermodynamics and will get familiarized with physical concepts such as work, heat, enthalpy, entropy etc. Students will be introduced to the chemistry lab where they learn about various safety aspects and hazards associated with chemicals, MSDS etc. Students will learn to carry out fundamental experiments such as finding boiling points, melting points, calibrating instruments etc.		
Semester	-	Credit	4
Total Student Learning Time	Instructional hours for theory 60		ctional hours for al/lab work/field work

Pre-requisite	Should know fundamental particles (electron, proton, neutron),
	charge, Bohr atomic model, the periodic table, and basic
	organic chemistry including naming organic compounds.
	Students should be aware of basic physical concepts like work,
	energy etc. Should know about various laboratory glasswares.

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;		
1	Understand the fundamentals of quantum mechanics and explain chemical bonding based on the theories of quantum mechanics.	R, U	
2	Compare the relative strengths of acids and bases, and the different factors affecting acidity and basicity	R, U, A	
3	Identify stereogenic centres in organic molecules, and distinguish between different types of isomers, including enantiomers and diastereomers	A, An	
4	Understand principles of classical thermodynamics and apply them to analyze systems and thermodynamic cycles	R, A	
5	Understand the various hazards associated with chemicals. Applying this knowledge for handling and disposing of chemicals	RUA	
6	Develop the necessary skills to work in a chemistry lab.	S	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1: Basic Inorganic Chemistry	Hours	CO No
nour 11 Subre merganne enemietry		00 110
Quantum mechanical model of atom and bonding:	16	1
Dual behaviour of matter, Heisenberg's Uncertainty		
Principle, double slit experiments, Classical wave		
equation, Schrödinger equation, Operators,		
Postulates of quantum mechanics, Particle-in-a-box,		
Schrödinger equation for the hydrogen atom,		

Thermodynamics: Thermodynamic terms, State and path functions. Concept of heat and work. First Law of thermodynamics, Second law of thermodynamics, Third law of thermodynamics, Fundamental concepts	12	4
Module 3: Concepts of Physical Chemistry	Hours	
Introduction, Concept of Isomerism, Classification of Stereoisomers, Optical Isomerism, Chirality & Elements of Symmetry, Wedge formula, Fischer projection, Newmann projection. Relative and absolute configurations, sequence rules, D & L, R & S systems of nomenclature. Understanding with examples for Enantiomers, mesoform, erythro/threo forms, diastereoisomers, inversion, retention, and racemization. Conformational understanding with an example of ethane, n-butane, Cyclohexane and Decalin.	16	2,3
Brønsted concept, Lux-Flood concept and Lewis's concept; HSAB principle, Superacid, Relative strengths of acids, Acid-base neutralization curves and indicators. Module 2: Basics of Stereochemistry	Hours	
 Oxidation and reduction: Reduction potential; electrochemical series, Redox reactions Balancing of redox equations, Factors affecting redox stability, Frost diagrams for redox reactions, Ellingham diagram and extraction of elements. Acids and bases: Arrhenius concept, solvent systems, 		
Chemistry of Solid: Classification of solids, Classification of crystalline solids, Crystal lattices and unit cell, seven crystal systems, Bravais's lattices, Number of atoms in a unit cell, packing in solids, Packing efficiency, Density of unit cell, Imperfection in solids, Crystal directions and planes, Crystal diffraction – Bragg's law, Electrical and Magnetic properties		
Qualitative description of many-electron systems, concepts of orbitals and quantum numbers. Shapes of orbitals, Aufbau principle, Pauli's exclusion principle, Hund's rule of maximum multiplicity, Valence bond and molecular orbital descriptions of bonding, Linear combination of atomic orbitals (LCAO) approach, Hybridization and Bonding. Bonding in homonuclear and heteronuclear diatomic molecules, Bond orders.		

of Statistical Thermodynamics - Probability - Partition		
function - ensembles - Boltzmann distribution.		
Chemical Equilibria: Law of mass action, thermodynamic derivation of law of chemical equilibrium. derivation of relations between the various equilibrium constants Kp, Kc and Kx (using chemical potential).		
Ionic Equilibria: pKa, pKb and pH – Buffer solutions. Mechanism of buffer action – Buffer index – Henderson equation – Applications of buffers - Hydrolysis of salts of all types – Degree of hydrolysis – Hydrolysis constant and its relation with Kw - Solubility product and common ion effect.		
Module 4: Basic Chemistry Laboratory Practices	Hours	
Laboratory orientation and safety protocols Safe lab practices-PPE, Fire and electrical safety. Chemicals and solvents-Storage and handling, Material Safety Data Sheet (MSDS), Special precautions for hazardous chemicals usage. Segregation and disposal of chemicals-sodium and broken mercury thermometer. Introduction to glassware and equipment in the lab and their working. Emergency response and evacuation- chemical spills, gas leakage and fire. Simple first aids: Electric shocks, fire, cut by glass and inhalation of poisonous gases - Accidents due to acids and alkalis - Burns due to phenol and bromine. Scientific ethics in lab-working individually and in a team. Maintaining lab record, Cleanliness and punctuality. 2. Basic principles & experiments related to sample/reagent preparation: practical concept of Molarity, Molality, Normality, equivalence, weight %, vol.%, Preparation of standard solutions, Dilution 0.1 M to 0.001 M solutions. 3. Calibration and use of Electronic Balances, thermometer (using 80-82 °C; Naphthalene, 113.5- 114 °C; Acetanilide, 132.5-133°C; Urea, 100 °C; Distilled Water), melting point apparatus (Naphthalene 80-82 °C, Benzoic Acid 121.5-122 °C, Urea 132.5-133 °C, Succinic Acid 184.5-185 ° C, Cinnamic Acid 132.5-133 °C, Salicylic Acid 157.5-158 °C Acetanilide 113.5-114 °C, Aspirin 135 °C) Determination of Boiling Point- Ethanol 78 °C, Cyclohexane 81.4 °C, Toluene 110.6 °C. Working principle of separating funnel, distillation setup,	16	5,6

centrifuge, hot air oven, magnetic stirrer, rotary evaporator.	
4. Separating homo and heterogeneous mixtures-	
Filtration, Concentration, Evaporation, recrystallisation, sublimation, separating funnel,	
distillation, chromatography.	

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz Field activities: Lab-based activities:
Mode of Assessment	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature Seminar Presentation – A topic needs to be presented and discussed with the class Semester End Examination Viva

D. A. McQuarrie, Quantum Chemistry, Viva Student ed., Viva, 2011.
 P. Atkins, J. de Paula and J. Keeler, Atkins' Physical Chemistry, 11th ed.,

OUP, 2018.

3. J. Barrett, Structure and Bonding, Wiley-Royal Society of Chemistry, 2002.

4. T. Engel and P. Reid, Physical Chemistry, 3rd ed., Pearson, 2013.

5. R. J. Silbey, R. A. Alberty and M. G. Bawendi, Physical Chemistry, 4th ed., Wiley Student ed., 2006.

6. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry – Principles of Structure and Reactivity, 4th ed., Pearson Education, 2006. 7. T. W. G. Solomons, C. B. Fryhle and S. A. Snyder, Solomons' Organic

Chemistry, Global Edn., 12th Edn., Wiley International, 2024

8. D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, 3rd Edn., New age international, 2018

9. P. S. Kalsi, Stereochemistry: Conformation and Mechanism, 11th Edn., New Age International, 2022

10. Experiments in General chemistry, C. N. R. Rao and U. C. Agarwal

11. Vogel's Textbook of Practical Organic Chemistry (5th Edition)

12. Vogel's Inorganic Practical Chemistry

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of discipline-specific foundation courses. Students will be empowered with the basic knowledge of chemistry and its significance in the modern world.

Parry Strangert	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Applied Chemistry 2			
Course Type	Minor			
Course Level	100-199			
Course Code	MG2DSCUCH141			
Course Overview	The Applied Chemistry-2 course gives an overview of the chemistry of various commodities which a person uses daily. of how chemistry influences day to day activity of a person. The students get general information about the chemical nature of the food they consume. The course gives an overview of the chemistry of different biomolecules and how they act as building blocks for life. The course will introduce the students to the field of forensic sciences and how chemistry has contributed to its success.			
Semester	1 C	Credit	4	
Total Student Learning Time	Instructional hours for theory60		Instructional hours for practical/lab work/field work	
Pre-requisite	Should be familiar with various consumable products (like medicine, fuel, etc)			

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand the important concepts of the chemical, physical and functional properties of food constituents	R, U	
2	Evaluate and explain how the highly complex nature of food results in biological activities.	R, U, A	
3	Will be able to understand and explain the physical as well as chemical properties of dyes and pigments	A, An	
4	Will get an overview of the development of forensic chemistry.	R, A	
5	Apply fundamental chemistry to solve forensic problems.	U	
6	Will be able to develop an understanding of the chemistry of biomolecules such as proteins and nucleic acids	Е	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1: Food Chemistry	Hours	CO No
Food Lipids: Edible fats and Oil, classification and chemical composition Food Carbohydrates: properties and utilization of common polysaccharides, Food minerals: Main elements and trace elements in common food, Enzymes in Food: Importance enzymes available in common food, the effect of inhibitors, pH and temperature on enzymes, Food Additives: Vitamins, Amino acids and Minerals, Aromo compounds, Flavour enhancers, Sugar substitutes, Food colour, Food contaminants: Impact of adulterant on food (melamine, formaldehyde, rhodamine etc) Beverages: Health benefits and its anti-oxidant properties, Food Preservation: Physical and chemical preservation of food	16	1, 2
Module 2: Dyes and Pigments	Hours	
Definition, colour and constitution of dyes- Armstrong theory (quinonoid theory) and its limitations. Witt's Theory: Chromophore, Auxochrome, Bathochromic & Hypsochromic Shift, Hypochromic & Hyperchromic	12	3

effect. Modern theories; Valence Bond theory and Molecular Orbital Theory. Requirements and properties of dyes, Classification based on origin: Natural dyes, Synthetic dyes-history and examples, Classification based on chromophore, examples with structure and synthesis, Chemistry of dying and dye industry, Mordants, Classification based on dying process, Analysis of dyes, health and safety aspects, Introduction to Fluorescence and laser dyes. Pigments: Introduction, Natural pigments - Structures of Porphyrins, Bile pigments. Synthetic pigments – Phthalocyanines; synthesis, properties and applications		
Module 3: Forensic Chemistry	Hours	
History of Development of Forensic Science: Functions of forensic science. Historical aspects of forensic science. Definitions and concepts in forensic science. Scope of forensic science. Need of forensic science. Basic principles of forensic science, Branches of Forensic science.	16	4, 5
Forensic Chemistry: Tools and techniques in forensic chemistry, Introduction, Colour & Spot test, microcrystal tests, inorganic and organic analysis. Analysis of Beverages, trace evidence and petroleum products. Classification of commonly encountered drugs and it's analysis. Recent trends in Forensic science - Biometrics in Personal Identification- Role in person Identification, Techniques and Technologies.		
Module 4: Biomolecules	Hours	
Structure and Functions of Biomolecules: Carbohydrates; Lipids; Amino acids and proteins; Nucleic acid: DNA and RNA, Coenzymes and cofactors.	12	6

Mode of	Classroom activities: Recitation, Seminar, Quiz	
Transaction	Field activities:	
	Lab-based activities:	
Mode of	1. Continuous Internal Assessment (CIA)	
Assessment	Internal Test	
	 Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination 	

1. Nanda, B.B. and Tewari, R.K. Forensic Science in India: A vision for the twenty first century Select Publisher, New Delhi (2001).

2. M.K. Bhasin and S. Nath, Role of Forensic Science in the New Millennium, University of Delhi, Delhi (2002).

3. W.G. Eckert and R.K. Wright in Introduction to Forensic Sciences, 2nd Edition, W.G. Eckert (ED.), CRC Press, Boca Raton (1997).

4. R. Saferstein, Criminalistics, 8th Edition, Prentice Hall, New Jersey (2004).

5. R. M. Christie, Colour Chemistry, 2nd Edn., Royal Society of Chemistry, 2012

6. Fennema's Food Chemistry, fourth edition, edited by S. Damodaran, K.L. Parkin, and O. R. Fennema, 2007, published by CRC Press

Relevance of Learning the Course/ Employability of the Course

Applied Chemistry course can help students to work in many designated roles such as Chemistry Content Writer, Scientific Data Entry Specialist, Chemical Business Analyst, Quality Assurance, etc.

Parent synthest	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Scie	nces	
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	World of Chemistry		
Course Type	MDC		
Course Level	100-199		
Course Code	MG2MDCUCH101		
Course Overview	This multidisciplinary course targets multiciliary leaners and hence provides a fundamental understanding on the significance and importance of chemistry as a central science. The strong influence of chemistry in our daily life is emphasized through various modules. The chemistry in and around us is presented followed by a brief introduction to the chemistry of nature involving biomolecules, natural products and atmospheric processes. The applications of chemistry in various sectors such as petroleum, agrochemicals, pharmaceuticals, forensic and polymer etc is also included. The overall objective of this course to inculcate an appreciation among students about the importance of chemistry		
Semester	2	Credit	3
Total Student Learning Time	Instructional hours for theory 54	onal hours for Instructional hours for practical/lab work/field work	

-	A basic idea about the significance and diverse applications	
	of chemistry in our life.	

CO No.	Expected Course Outcome	LearningPSCDomainsNo.	
	Upon completion of this course, students will be able to ;		
1	Appreciate the significance of chemistry	U, A	
2	Understand the importance of chemistry in daily life	U An	
3	To familiarise the chemistry involved in natural compounds and processes	U, E	
4	To correlate different segments of atmospheric chemistry & their influences	U, An,	
5	To understand the basics of petroleum, agrochemicals, drugs, and forensic chemistry	U, An	
6	To familiarise with various class of polymeric materials and their applications	A, An	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S))

COURSE CONTENT

Module 1: Chemistry as central science	Hours	CO No
Evolution of chemistry-alchemy, ancient concepts to particulate nature of matter, laws of chemical combination, mole concept, molarity and normality; Branches of chemistry, Atomic structure and chemical bonding, periodic table, Contribution of chemistry to mankind and society, Need for Green Chemistry, 12 principles of Green Chemistry. Chemistry in everyday life: Chemistry everyehere: Agriculture, food, textile, Petrochemicals, medicines, Automobiles, building materials (bricks, marbles, granites, cement, paints and coatings etc), household goods: plastics, rubber, ceramics, steel, wood, electrical and electronics etc; soaps and detergents; Stellar energy : fission and fusion reactions, solar cells.	10	1,2
Module 2: Chemistry of Nature	Hours	

Origin of life, Amino acids, water, Basic elements; Chemistry in and around us, Chemical composition of the earth's atmosphere, Composition of the Human Body and chemical processes, Chemistry of vision; Chemistry of flowers. Biomolecules: Structure and Functions of Biomolecules: Carbohydrates; Lipids; Amino acids	20	3,4
Biomolecules: Carbohydrates; Lipids; Amino acids and proteins; Nucleic acid: DNA and RNA, Enzymes, plant pigments, cellulose, collagen, vitamins Natural Products and processes: NR latex, Photosynthesis, Phosphorescence and fluorescence, Bioluminescence, Bioinorganic chemistry: Hemoglobin and Myoglobin, Chlorophyll and photosynthesis, Nitrogen fixation and vitamin B12		
Atmospheric chemistry: Various segments of atmosphere & their significance, sources and toxic effects of air pollutants, Stratospheric Chemistry- Ozone formation, processes for catalytic decomposition of ozone; Tropospheric Chemistry- Smog, Phototransformation,, Acid rains, sources & sinks, The chemistry of global climate, greenhouse gases & global warming		
Module 3: Applied Chemistry	Hours	
Fuels and Petroleum:, classifications: gas, liquid and solid fuels, comparison, properties and methods of fuel processing; Calorific value, Origin and formation of petroleum, Constituents of Petroleum or crude oil, Types of Hydrocarbons and Non- hydrocarbons present in petroleum Agrichemicals: classification of fertilizers, natural fertilizers, nitrogenous fertilizer, Phosphate fertilizers, NPK fertilizers, the effect of fertilizer- pollution. Insecticides classification, DDT, BHC, Gammexane, Endosulfan. Pharmaceuticals: An overview of drugs and drug targets; Basic terminology in drug discovery, IC50, LogP, LogD, MIC, classification of drugs and diseases, structure, functions and applications of common drugs (one example each): Antibiotics, antibacterials, Antiviral drugs, Analgesics and anti inflammatory drugs, non-steroid anti-inflammatory drugs(NSAIDS), ATPase inhibitors and cardiovascular drugs. Forensic chemistry: Introduction, Colour & Spot test, microcrystal tests, inorganic and organic analysis. Analysis of Beverages	24	5, 6

Polymers: Synthesis, Properties and aapplications of various commodity polymers: Thermoplastics, Resins,	
elastomers, fibres, silicone polymers; Specialty	
polymers – Engineering plastics, biomedical polymers;	
Natural and Synthetic rubbers, vulcanization;	
Synthetic Fibers: preparation, properties, Rayon,	
Nylons, Orlon, Teflon.	

Mode of Transaction	Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments, Peer teaching and learning, Technology- enabled learning, Library work
Mode of	1. Continuous Internal Assessment (CIA)
Assessment	Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 2. Seminar Presentation – A topic needs to be presented and discussed with the class 3. Semester End Examination

1. Lehninger's Principles of Biochemistry, Cox and Nelson, Fifth Edition (Reference).

2. Eagle's Applied Chemistry - I by S. C. Ahuja & G. H. Hugar, Eagle Prakashan, Jalandhar.

3. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.

4. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi.

5. An Introduction to Medicinal Chemistry, Graham L. Patrick; Second Edition.

6. F.W.Billmeyer, Text Book of Polymer Science, Wiley interscience, 1976.

7. H. R. Allock, F.W. Lampe. 'Contemporary Polymer Chemistry'. Prentice hall, 1981

Relevance of Learning the Course/ Employability of the Course

Job prospects in Several industrial sector discussed above.

AND IL CONTRACTOR	MAHATMA GANDHI UNIVERSITY Graduate School
विद्यवा अमुतपरन्ते	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Physical Chemistry		
Course Type	Major		
Course Level	200-299		
Course Code	MG3DSCUCY201		
Course Overview	Understanding the fundamental properties and behaviours of solids and liquids. Understanding the fundamental principles and laws of thermodynamics and learn about the behaviour of gases, liquids, and solids under various conditions. Learn about the various colligative properties and their significance. Analyze the effect of solutes on the properties of solvents. Apply colligative properties to solve real-world chemical problems. Understand the fundamental principles and mechanisms of photochemical reactions. Learn about the interaction of light with matter and the resulting chemical processes		
Semester	3	Credit	4
Total Student Learning Time	Instructional hours for theory 60		tional hours for al/lab work/field work 0
Pre-requisite	Basic knowledge about sta	ates of matter	

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be able to ;		

1	Will understand the concepts of Viscosity and Surface tension and will be able to correlate them in real-life application	R, U
2	Understand the principle of X-ray diffraction and apply it to indices diffraction patterns	R, U, A
3	Able to understand the laws of thermodynamics and solve problems involving heat and work.	A, An
4	Will be able to apply the principles of colligative properties in real-life	UAE
5	Understand the significance of Jablonski diagram	RU
6	Will be able to understand different photophysical process and how and why it happens	E

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S))

COURSE	CONTENT	
Module	1. Liquid and So	lic

Module 1: Liquid and Solid State	Hours	CO No
Quantum Qualitative treatment of the structure of the liquid state; Radial distribution function; physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents. Temperature variation of viscosity of liquids and comparison with that of gases. Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Glasses and liquid crystals.	16	1
Module 2: Thermodynamics	Hours	
Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state. Partial molar quantities, the dependence of thermodynamic parameters on composition; Gibbs-	16	2,3

Duhem equation, the chemical potential of ideal mixtures, change in thermodynamic functions in the mixing of ideal gases. Module 3: Colligative Properties Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Excess thermodynamic functions. Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.	Hours 12	4
Module 4: Fundamentals of Photochemistry	Hours	
Frontier Molecular orbitals of simple molecules like ethene, 1,3-butadiene, 1,3,5-hexatriene, Jablonski diagram, Photon Absorption, electronic excitation, photochemical laws- Grotthuss- Draper law and Stark-Einstein law, characteristics of electronically excited states-life times, Energy dissipation by radiative and non-radiative processes, absorption spectra, Emission spectra, Fluorescence and photosphorescence, Franck-Condon principle, Photochemical stages- primary and secondary processes, the process of photosensitization, photochemistry in biological processes, photochemistry of vision.	16	5,6

Mode of	Classroom activities: Recitation, Seminar, Quiz	
Transaction	Field activities:	
	Lab-based activities:	
Mode of	1. Continuous Internal Assessment (CIA)	
Assessment Internal Test		
	Assignment – Every student needs to write an assignment on	
	a given topic based on the available published literature	
	2. Seminar Presentation – A topic needs to be presented and	
	discussed with the class	
	3. Semester End Examination	
	4. Viva	

1. D. A. McQuarrie, Quantum Chemistry, Viva Student ed., Viva, 2011.

2. P. Atkins, J. de Paula and J. Keeler, Atkins' Physical Chemistry, 11th ed., OUP, 2018.

3. J. Barrett, Structure and Bonding, Wiley-Royal Society of Chemistry, 2002.

4. T. Engel and P. Reid, Physical Chemistry, 3rd ed., Pearson, 2013.

5. R. J. Silbey, R. A. Alberty and M. G. Bawendi, Physical Chemistry, 4th ed., Wiley Student ed., 2006.

6. Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011).

7. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry 8th Ed.; McGraw-Hill: New York (2003).

8. Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3rd Ed.; W.H. Freeman & Co.: New York (2003).

9. G. Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall of India, 2001.

10. H. Kaur, Spectroscopy, 6th Edn., Pragati Prakashan, 2011.

11. Organic Chemistry, Carey and Sundberg

12. Advanced organic chemistry by J March

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of practical application and quality controlrelated jobs. This course provides the fundamental knowledge which is necessary to understand the formation of substance, the nature of the substance etc.

AREITAL SPECTRO	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Organic Chemistry 1			
Course Type	Major			
Course Level	200-299			
Course Code	MG3DSCUCY202			
Course Overview	Understand the fundamental principles of organic synthesis, Learn the key reactions and mechanisms in organic chemistry			
Semester	3	Credit	4	
Total Student Learning Time	Instructional hours for theory		Instructional hours for practical/lab work/field work	
Pre-requisite	60 Naming of Organic compo	ounds and Bas	ic Steriochemistry	
▲ • • •				

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be able to ;	-	

1	Will understand the steps involved in forming and breaking chemical bonds	R, U
2	Analyze and predict the mechanisms of organic reactions	R, U, A
3	Able to design multi-step synthetic routes for target molecules	A, An
4	Understanding various factors affecting the organic reactions	UAE
5	Identifying different reagents and reaction conditions for organic synthesis. Will be able to apply this skill for evaluating synthetic and biochemical reactions	E, S
6	Will be able to apply the organic synethsis for real-world applications	S

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S))

~ ~		~~ 17/ T 17/
('()	IIDCH.	C C MALLENAL
$\mathbf{v}\mathbf{v}$	UNDE	CONTENT

Module 1: Basic Organic Synthesis and Principles	Hours	CO No
Alkanes: Preparation by reduction of alkyl halides, Wurtz reaction and Kolbe's electrolytic methods with mechanism; Alkenes: preparation by dehydration of alcohols, dehydrohalogenation of alkylhalides, dehalogenation of vicdihalides and by Kolbe's electrolytic method. Alkynes: Preparation by dehydrohalogenation of vic-dihalides and gem- dihalides, dehalogenation of tetrahalides. Reactions: addition reactions with hydrogen, halogens, hydrogen halide (markownikoffs rule, peroxide effect), hydroboration, ozonolysis, hydroxylation with KMnO4, allylic substitution by NBS.	16	1
Module 2: Organic Reactions	Hours	
SN_1 and SN_2 reaction mechanism: effects of structure, substrate, solvent, nucleophile and leaving groups. Mechanisms of E_1 and E_2 reactions, Hoffmann and Saytzeffs rules cis and trans eliminations, Elimination Vs substitution. Addition reactions.	16	2,3
Module 3: Aromaticity and Aryl Compounds	Hours	
Aromatic hydrocarbons and aromaticity, resonance in benzene, Huckel's (4n+2) rule and its simple applications. Acidic character of phenols - explanation based on resonance stabilization. Electrophilic	12	4

substitution reactions in aromatic compounds. ortho/para/meta directive influence with examples. Activating and deactivating groups with examples. Benzyne mechanism The aryl group, Aromatic nucleus and side chain, Side chain reactions of benzene derivatives, Birch reduction, Methods of formation and chemical reactions of alkylbenzenes, alkynylbenzenes and biphenyl.		
Module 4: Alcohols and Phenols	Hours	
Methods to distinguish between Primary, secondary and tertiary alcohols (Lucas, Victor Meyer's and oxidation method). Preparation of monohydric alcohols from carbonyl compounds using Grignard reagents, reduction of aldehydes, ketones, carboxylic acids and esters,Rosenmund's reduction, Hydrogen bonding, Acidic nature, Reactions of alcohols.Dihydric alcohols: methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)4 and HIO4] and pinacol-pinacolone rearrangement. Trihydric alcohols: methods of formation, reactions of glycerol. Nomenclature, structure and bonding of phenols, Preparation of phenols, physical properties and acidic character, Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion, Reactions of phenols - electrophillic aromatic substitution, acylation and carboxylation Mechanisms of Fries rearrangement, Claisen rearrangement, Gatterman synthesis, Hauben- Hoesch, Lederer-Manasse and Reimer-Tiemann reaction	16	5,6

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz	
	Field activities:	
	Lab-based activities:	
Mode of Assessment	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 	

2. Seminar Presentation – A topic needs to be presented and discussed with the class
3. Semester End Examination
4. Viva

- 1. Organic Chemistry by T. W. Graham Solomons, Craig B. Fryhle and Scott A. Snyder, Twelfth Edition, Wiley, 2016.
- 2. Advanced organic chemistry by J. March, 6th Ed.
- 3. Advanced organic chemistry part-A. F. A. Carey and R. J. Sundberg, 5th Ed. Springer (2007)
- 4. Organic Chemistry, J. Clayden, N. Greeves, S Warren, P. Wothers, Oxford University Press, Oxford, 2001
- 5. Principle of Organic Synthesis, Third Edition, Richard Norman and James M. Coxon.

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of understanding the structure, properties, and reactions of organic compounds and materials. Students can find jobs in Pharmaceuticals, Biochemistry, Environmental Science, Agricultural sector etc.

Recent Sugarument	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Inorganic Chemistry		
Course Type	Major		
Course Level	200-299		
Course Code	MG3DSCUCY203		
Course Overview	This course integrates key topics in inorganic chemistry, material science, and nuclear chemistry, providing students with a comprehensive understanding of the properties, behaviors, and applications of main group elements, metallurgy, inorganic polymers, and nuclear reactions. This multidisciplinary approach highlights the crucial role of these areas in modern science and technology, from materials manufacturing to energy production and nuclear safety. By the end of the course, students will have a strong foundation in the behavior and applications of main group elements, the practical principles of metallurgy, and the Structure-Property Relationships in emerging field of inorganic polymers, empowering them to contribute to innovations in materials science, energy production, and the safe application of nuclear technology.		
Semester		redit	4
Total Student Learning Time	Instructional hours for theory	for Instructional hours for practical/lab work/field work	

	60
Pre-requisite	Students should be comfortable with basic concepts in chemical reactions, atomic structure, thermodynamics, and bonding, as these concepts are integral to understanding the behavior of elements, the processes in metallurgy, and the chemistry of inorganic polymers.

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	understand the chemistry of main group elements and their significance in biological, environmental and industrial contexts.	R, U	
2	learn the structure, properties, and applications of inorganic polymers and their role in advanced materials science.	U, A, An	
3	to explore the fundamental principles and applications of metallurgy, focusing on metal extraction, processing, and alloying.	U, A, An	
4	familiarize fundamental concepts of nuclear chemistry, focusing on radioactive decay, nuclear reactions, and their applications in energy and medicine	UAE	
5	will be capable of applying their theoretical knowledge to practical scenarios, including the synthesis of inorganic compounds, the selection of materials for industrial processes, and the	An,E	
6	Make them capable to design new materials with specific properties.	S	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S))

Module 1: Chemistry of Main group elements	Hours	CO No
S-block elements: The chemistry of hydrogen, extraction of alkali metals and alkaline earth metals, anomalous properties of s-block elements, chemical properties (important hydrides, hydroxides, oxides), alkali and alkaline earth metal complexes, biological importance of Na, K, Mg and Ca. <i>P-block elements:</i> Important compounds of boron and aluminium (boron hydride, boranes, diborane, Wades rule, borazine, boric acid, boron-nitrogen compounds, trihalides of B and Al), allotropes of carbon, structure and properties of graphite and diamond, fullerenes, silica, silicates, zeolites, oxoacids of phosphorous, sulphur and halogens, phosphazenes, phosphines, ozone, structure and bonding in interhalogen compounds, polyhalides	22	1
Noble gases: Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of Xenon compounds. (XeF2, XeF4 and XeF6XeO3, XeO2F2, XeOF4, XeO4, XeO3F2 and [XeO6]4-), Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF2). Molecular shapes of noble gas compounds (VSEPR theory).		
Module 2: Inorganic Polymers	Hours	
Types of inorganic polymers, comparison with organic polymers, synthesis and applications of polymers containing inorganic atoms: Main group containing polymers: polysiloxanes, polysilanes, Borazines polyphosphazenes, Polysulphates structure, and synthesis and preparation of Transition metal containing polymers., Organic-inorganic hybrid materials Organometallic magnets Metal coordination polymers (metal-organic frameworks), importance of supramolecular compounds in main group chemistry	10	2,3
Module 3: General Principles of metallurgy	Hours	
Types of metallurgy : extractive metallurgy, physical metallurgy, and mechanical metallurgy Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal	12	4

oxides using carbon and carbon monoxide as reducing agents. Electrolytic Reduction, Hydrometallurgy. Methods of purification of metals: Electrolytic Kroll process, Parting process, van Arkel-de Boer process and Mond's process, Zone refining.		
Module 4: Fundamentals of Nuclear chemistry	Hours	
Fundamentals of Nuclear chemistry, Radioactivity and radioactive decay: The theory of radioactive disintegration, and how an unstable atomic nucleus loses energy through radiation. Nuclear structure and stability: The structure of the nucleus and how it is stable, Nuclear reactions: The four main types of nuclear reactions: fission, fusion, nuclear decay, and transmutation	16	5,6

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz	
	Field activities:	
	Lab-based activities:	
Mode of	1. Continuous Internal Assessment (CIA)	
Assessment	Internal Test	
	Assignment – Every student needs to write an assignment on a given topic based on the available published literature	
	2. Seminar Presentation – A topic needs to be presented and discussed with the class	
	3. Semester End Examination	
	4. Viva-Voce	

Relevance of Learning the Course/ Employability of the Course

This course is designed for undergraduate and graduate students in chemistry, materials science, engineering, and related disciplines who wish to deepen their knowledge of inorganic chemistry and materials technology.

References:

- 1. Principles of Inorganic chemistry by B.R Puri, L.R Sharma and K C Kalia
- 2. Inorganic Chemistry by Gary L. Miessler, Paul J. Fischer, and Donald A. Tarr
- 3. Concise in Inorganic chemistry by J.D. Lee
- 4. Essentials of nuclear chemistry by H J Arnikar
- 5. Nuclear Chemistry: For BSc & amp; MSc Students of Indian Universities by C V Shekar

Recent segentary	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences				
Programme	4 + 1 Integrated UG and PG Programme				
Course Title	Advanced Chemistry 1				
Course Type	Minor				
Course Level	200-299				
Course Code	MG3DSCUCH221				
Course Overview	The course is designed to provide comprehensive knowledge about materials defined by nanoscale dimensions and their diverse applications Further, the course gives an overview of how materials are designed to have specific functional properties and their wide-ranging applications. Finally, the course will touch upon characterization techniques which is commonly used for material characterization.				
Semester	3 C	redit	4		
Total Student Learning Time	Instructional hours for theory 60		tional hours for l/lab work/field work		
Pre-requisite	Basic knowledge about mair	ı group elen	nents		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand the fundamentals of nanomaterials	R, U	
2	Understand the physical and chemical properties, will be able to analyse and evaluate the variation in properties with size	U, An, E	
3	Gain the idea of surface plasmon resonance (SPR) and its effect on colour of metal nanoparticles	U, An	
4	Familiarise various synthesis methods of nanaomaterials	U, R, A	
5	Develop knowledge on various low- dimensional solids	U, R	
6	Understand different techniques for nanomaterial characterization and will be able to apply these tools for evaluating nanomaterials	U, S	

(An), Evaluate (E), Create (C), Skill (S)

COURSE CONTENT

Module 1: Nanomaterials	Hours	CO No
Definition of nanomaterial. Classification of nanomaterials (0D, 1D, 2D and 3D). Nanocrystals and Nanoclusters. Surface area. Size effect on material properties (optical, electronic, chemical, mechanical and magnetic). Colour of metal nanoparticles, Surface Plasmon resonance. Synthesis of nanomaterials Top down and bottom up approaches Physical methods: Mechanical milling and Sputtering, Chemical methods: Chemical reduction and Sol-gel method. Special nanomaterials: CNT, Fullerene, Quantum dots.	16	1
Module 2: Functional Materials	Hours	

Ceramics, composites, polymers, and glasses, Mechanical, electrical, thermal, and optical properties, Understanding the correlation between structure and properties, Case studies of functional materials	16	2,3
Module 3: Characterization techniques of nanomaterials	Hours	
Morphological analysis: Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM). Spectroscopic methods: UV-Vis spectroscopy. Scanning Probe method: Atomic Force Microscope (AFM). X-ray Diffraction Analysis (XRD), Dynamic Light Scattering (DLS), Surface area and porosity - Brunauer-Emmett-Teller (BET).	12	4
Module 4: Application	Hours	
Energy harvesting and storage, Healthcare and biomedical applications, Electronics and information technology, Innovations in functional materials	16	5,6

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz			
	Field activities:			
	Lab-based activities:			
Mode of1. Continuous Internal Assessment (CIA)				
Assessment	Internal Test			
	Assignment – Every student needs to write an assignment on a given topic based on the available published literature			
	2. Seminar Presentation – A topic needs to be presented and discussed with the class			
	3. Semester End Examination			
	4. Viva			

- N. R. Rao, A. Muller, A. K. Cheetham, The Chemistry of Nanomaterials, Vol 1 &2, John Wiley & Sons, 2005.
- 2. G. L. Hornyak, J. Dutta, H. F. Tibbals, A. K. Rao, Introduction to Nanoscience, CRC Press, 2008.
- 3. G. L. Hornyak, H. F. Tibbals, J. Dutta, J. J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, 2009.
- 4. J. E. Huheey, R. A. Keiter, R. L. Keiter, Inorganic Chemistry-Principles of Structure and Reactivity. Prentice Hall, 1997.
- 5. Nanostructures and Nanomaterials- Synthesis, Properties & applications by Guozhong Cao, Imperial College Press, 2006.
- 6. Nanomaterials and Nanochemistry by C. Brechignac.P. Houdy M. Lahmani SpringerVerlag, 2007.
- 7. Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar, Polymer Science, New Age International, 1986.
- 8. J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials, 3rd Edn., CRC Press, 2008.
- 9. F.W. Billmeyer, Text Book Of Polymer Science, 3rd Edn., Wiley, 1984.
- 10. P.J. Flory, Principles of Polymer Chemistry, Cornel University Press, 1953.

Relevance of Learning the Course/ Employability of the Course

This course is crucial for advancing technology and society in various innovative and sustainable ways. Students can find jobs in electronics and semiconductor industry, energy sector etc

Parerer strange	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences					
Programme	4 + 1 Integrated UG and	4 + 1 Integrated UG and PG Programme				
Course Title	The Fascinating world o	The Fascinating world of gels				
Course Type	MDC					
Course Level	200-299					
Course Code	MG3MDCUCH201	MG3MDCUCH201				
Course Overview	It deals with the significance of gels and how their physical and chemical properties are unique. Briefs about various synthesis methods for Gels, how it is characterized and its applications					
Semester	3	Credit	3			
Total Student Learning Time	Instructional hours for theory 60		ctional hours for cal/lab work/field work			
Pre-requisite	Basic Chemistry					

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.

	Upon completion of this course, students will be able to ;	
1	Understand the physical and chemical properties of Gels	R, U
2	Remember how gels are classified	R, U, A
3	Unserstand the significance and applications of hydrogels	A, An
4	Enable them to synthesise and characterize gels	S
5	How gels can be used in Biomedical application	S
6	How gels can be used in Industrial and environmental applications	S

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S))

COI	JR	SE	С	ON	ITI	ENT	
	-	-		-		-	

Module 1: Introduction to Gels	Hours	CO No
Definition and properties of the gel, Network structure and molecular interactions, Rheological, Swelling, and mechanical behaviour, Stimuli responsiveness and reversibility, Identification of gel-vial inversion test, Classification of gels Gelation mechanisms and theories. Polymer gel and Low molecular weight gels (LMWGs) Significance of hydrogels	15	1, 2
Module 2: Synthesis and Characterization of gels	Hours	
Chemical methods, Physical methods, Biological methods, Spectroscopic techniques, Microscopic techniques, Mechanical and rheological studies, Thermal and swelling studies	15	3,4
Module 3: Applications of gels	Hours	
Biomedical applications: Drug delivery, tissue engineering, wound healing, Industrial applications: Food additives, cosmetics, energy storage, contact lens, food packaging, 3-D printing, personal hygiene products, Environmental applications: Water purification, oil recovery, agriculture applications	15	5,6

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz
	Field activities:
	Lab-based activities:
Mode of	1. Continuous Internal Assessment (CIA)
Assessment	Internal Test
	Assignment – Every student needs to write an assignment on a given topic based on the available published literature
	2. Seminar Presentation – A topic needs to be presented and discussed with the class
	3. Semester End Examination
	4. Viva

- 1) Fundamentals and Applications of Polymer Gels, Ronald A. Siegel
- 2) Polymer gels, Fundamentals and Biomedical application, Danilo DeRossi,
- 3) Supramolecular Gels, Materials and emerging applications, Tifeng Jiao

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of practical application. Students can find jobs in Industry especially dealing with biomedical, food, and everyday consumables (like cosmetics, contact lenses, diapers etc).

Rear Syruad	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Chemistry for Sustainable Society			
Course Type	VAC			
Course Level	200-299			
Course Code	MG3VACUCH201			
Course Overview	The course is designed to understanding of how sustainability	-		e
Semester	3	Cre	edit	3
Total Student Learning Time	Instructional hours for theory		Instructional hours for practical/lab work/field work	
	45			
Pre-requisite	Understanding of basic chemistry principles, Familiarity with environmental science concepts			

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.

	Upon completion of this course, students will be able to ;	
1	Aware of the socioeconomic consequences of tragedies related to chemicals and radiation	R, U
2	Learn about possible hazards associated with chemicals and radiation	R, U, A
3	Identifying and analyzing risks and vulnerabilities	A, An
4	Able to develop techniques which can mitigate disaster	UAE
5	Understand sustainable development goals	S
6	Learn about the role of chemistry in developing sustainable society	S

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S))

Module 1: Global Tragedies	Hours	CO No
An insight into significant global tragedies, Bhopal Gas Tragedy, Chernobyl and Fukushima Nuclear Accident, Minamata Disease, Endosulfan tragedy in Kerala, Halifax Explosion, the Texas City Disaster	15	1
Module 2: Disaster Management	Hours	
Mitigation of Industrial/chemical accidents, oil spills, nuclear accidents, urban fires, battery fires, ionising radiation exposure, warning systems, training, Risk assessment	15	2,3
	Hours	
Module 3: Sustainability	nouis	

Mode of TransactionClassroom activities	Classroom activities: Recitation, Seminar, Quiz
	Field activities:

	Lab-based activities:
Mode of	1. Continuous Internal Assessment (CIA)
Assessment	Internal Test
	Assignment – Every student needs to write an assignment on a given topic based on the available published literature
	2. Seminar Presentation – A topic needs to be presented and discussed with the class
	3. Semester End Examination
	4. Viva

- 1) Global Disaster Management Challenges and Reactions, Bhimal Dhawan
- 2) World's Worst...Chemical Disasters Rob Alcraft
- 3) Sustainable Chemistry, G Reniers, WIT Press

Relevance of Learning the Course/ Employability of the Course

The course equips students with critical skills and knowledge for responding to and mitigating the impacts of various disasters. Graduates can find roles in government, industry, academic research, environmental consultancies, and think tanks as experts in green and sustainable chemistry

Perer Segretary	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Inorganic and Physical Chemistry			
Course Type	Major			
Course Level	200-299			
Course Code	MG4DSCUCY201			
Course Overview	This advanced course provides a detailed introduction to quantum mechanics, focusing on its principles, mathematical formulations, and the various approximation methods used to solve complex quantum systems. The course also emphasizes the role of quantum mechanics in understanding chemical bonding in molecules and materials. Significance of symmetry and group theory and its applications towards spectroscopy will also be discussed. By the end of the course, students will have a solid foundation in quantum mechanics and its approximation methods, an appreciation for the role of symmetry and group theory in chemical analysis, and a deep understanding of how quantum mechanics explains the nature of chemical bonding. This knowledge will prepare them for advanced research and work in computational chemistry, molecular modeling, spectroscopy, and materials design.			
Semester	4	Cre		4
Total Student Learning Time	Instructional hours for theory 60		Instructional hours for practical/lab work/field work	

Pre-requisite	To succeed in a course on Quantum Mechanics and
	Approximation Methods in Quantum Mechanics, students
	should have a strong foundation in mathematics (calculus,
	linear algebra, differential equations, and complex numbers),
	classical mechanics, and electromagnetism. Familiarity with
	classical wave theory, and an introductory understanding of
	quantum concepts.

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	understand the core principles and mathematical foundations of quantum mechanics.	U,A, E	
2	learn to apply Schrödinger equation to simple systems such as the free particle, particle in a box, harmonic oscillator and rigid rotor and the hydrogen atom.	U, A, An	
3	To explore approximation methods that simplify quantum mechanical solutions for systems with many particles or complicated interactions.	A, An,E	
4	Significance of symmetry in chemical bonding	UAE	
5	Predict the vibrational modes in molecule	US	
6	Predict the stability of conjugated organic molecules	U An E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1: Foundation of Quantum Mechanics	Hours	CO No
Postulates of quantum mechanics, Schrödinger equation and its application to particles in 1-D box (complete solution) - quantization of energy levels, zero-point energy, probability distribution functions, nodal properties. Extension to 3-D boxes, separation of variables, degeneracy. Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wave		1,2

functions. Vibrational energy of diatomic molecules and zero-point energy. Angular momentum: Commutation rules, quantization of square of total momentum and z- component. Rigid rotator model of rotation of diatomic molecule: Schrödinger equation, transformation to spherical polar coordinates. Separation of variables (Preliminary treatment). The Hydrogen Atom, separation of variable, Radial wavefunction, spherical harmonics, polar diagrams, complete solutions and energies, orbitals and quantum numbers. Spin orbitals:Construction of spin orbitals from orbitals and spin functions, spin orbitals for many electron atoms, symmetric and antisymmetric wave functions. Pauli's exclusion principle,Slater determinants. Atomic and molecular term symbols. Module 2: Approximation Methods in Quantum Mechanics	Hours 16	2,3
problem and the need of approximation methods, independent particle model. Variation method:Variation theorem with proof, variation treatment for the ground state of the helium atom. Perturbation method, time- independent perturbation method (non-degenerate case only), first order correction to energy and wave function, illustration by application to particle in a 1D-box with slanted bottom, perturbation treatment of the ground state of the helium atom. Hartree-Fock method,multi-electron atoms. Hartree-Fock equations (no derivation). The Fock operator, core hamiltonian, coulomb operator and exchange operator.Qualitative treatment of Hartree-Fock Self-Consistent Field (HFSCF) method. Roothan's concept of basis functions, Slater type orbitals (STO) and Gaussian type orbitals (GTO), sketches of STO and GTO.		
Module 3: Symmetry & Group Theory	Hours	
Introduction to Elements of symmetry of molecules (Identity, proper axis of rotation, plane of symmetry, centre of symmetry and improper axis of rotation) – corresponding symmetry operations – Schoenflies notation – binary combinations of symmetry operations. Rules for a set of elements to form a mathematical group - point group classification Group multiplication table, Great Orthogonality Theorem, Reducible and Irreducible representation, Character table, application of group theory in Vibrational Spectroscopy	12	4
Module 4: Chemical Bonding	Hours	

Molecular Orbital Theory, Molecular Orbitals of	16	5,6
homonuclear and heteronuclear diatomic molecules,		
Identifying Molecular Orbital symmetries, Symmetry		
Adapted Linear Combination (Bend and Planar Molecules).		
treatment of H2+ . Bonding and antibonding orbitals.		
Qualitative extension to H2. Comparison of LCAO-MO and		
VB treatments of H2 (only wave functions, detailed solution		
not required) and their limitations. Localized and non-		
localized molecular orbitals treatment of triatomic (BeH2,		
H2O) molecules Huckels Molecular Orbital Theory, Setting		
up the Huckel secular determinant, Solving the HMO		
determinantal equation for orbital energies.		

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz				
	Field activities:				
	Lab-based activities:				
Mode of Assessment	1. Continuous Internal Assessment (CIA) Internal Test				
	Assignment – Every student needs to write an assignment on a given topic based on the available published literature				
	2. Seminar Presentation – A topic needs to be presented and discussed with the class				
	3. Semester End Examination				
	4. Viva				

Relevance of Learning the Course/ Employability of the Course

Quantum mechanics is the foundational theory that explains the behavior of matter and energy at microscopic scales. It provides insight into the structure of atoms, molecules, and subatomic particles. Mastery of quantum mechanics is essential for anyone pursuing research in physics, chemistry, or material science, as it helps explain phenomena that cannot be understood using classical physics, such as atomic spectra, quantum tunneling, and particle-wave duality.Understanding fundamental phenomena is essential for designing advanced materials and systems, and driving new technologies such as quantum computing, renewable energy, and nanotechnology

References:

- 1. Principles of Physical chemistry by B.R Puri, L.R Sharma and K C Kalia
- 2. Quantum Chemistry by Levine
- 3. Quantum Chemistry by A. K Chandra
- 4. Quantum Mechanics by R.K Prasad
- 5. Chemical applications of group theory, F Albert Cotton

ABERIT SIZAHETE	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Organic Chemistry II			
Course Type	Major			
Course Level	200-299			
Course Code	MG4DSCUCY202			
Course Overview	Learn about various functional groups and understand the mechanism of reactions involving			
Semester	4	Cre	edit	4
Total Student Learning Time	Instructional hours for theory			ctional hours for al/lab work/field work
Pre-requisite	Basic Organic Chemistry, n	amir	ng compour	uds

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be		
	able to ;		
1	Understand the structure propoperties of different functional group	R, U	

	Name different functional groups using IUPAC rules.	
2	Learn various preparation methods for introducing functional groups	R, U, A
3	Analyze the mechanisms of reactions involving these functional groups	A, An
4	Apply knowledge to real-world organic synthesis problems.	UAE
5	Understand the importance and applications of these compounds in industry and research	S
6	Enabling students for laboratory experiments to prepare various compounds	S

Module 1: Ethers, Epoxides, Aldehydes and Ketones	Hours	CO No
Nomenclature and methods of formation, physical properties, Chemical reactions: cleavage and autoxidation, Zeisel's method. Synthesis of epoxides. Acid and base- catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of Grignard and organolithium reagents with epoxides. Preparation of aldehydes and ketones, Oppeanauer oxidation. Synthesis of aldehydes and ketones from acid chlorides, 1,3-dithianes, nitriles and carboxylic acids, Physical properties. Mechanism of nucleophilic additions to carbonyl group: Perkin and Knoevengel condensations, Condensation with ammonia and its derivatives. Wittig reaction. Mannich reaction, Use of acetals as protecting group. Reactions of aldehydes and ketones (Reduction using LiA1H4, Clemensen and Wolf- Kishner reduction, reaction with alcohols) Baeyer-Villiger oxidation, Meerwein-PondorofVerley, Clemmensen, and NaBH4 reductions, Mechanism of Aldol condensation, Cannizzaro's reaction, Reimer – Tiemann reaction, Perkin's reaction, Benzoin condensation.	16	1
Module 2: Carboxylic Acids & Derivatives	Hours	
Acidity of Carboxylic Acids, Effects of Substituent's on Acid Strength. Preparation and reactions of carboxylic acids. Hell-Volhard-Zelinsky reaction. Synthesis of acid chlorides, esters and amides. Mechanisms of esterification and hydrolysis (acidic and basic). Reduction of carboxylic acids, Mechanism of decarboxylation, effect of heat and dehydrating agents, methods of formation and chemical	16	2,3

reactions of unsaturated monocarboxylic acids, Dicarboxylic acids, haloacids, hydroxy acids-Malic, tartaric & citric acid and acid anhydrides. Physical properties, interconversion of acid derivatives by nucleophilic acyl substitution. Module 3: Alkanes, Cycloalkanes, Alkyl and Aryl	Hours	
Halides		
Corey House reactions and decarboxylation of carboxylic acids, Mechanism of free radical halogination of alkanes, Cycloalkanes: Nomenclature, methods of preparations, chemical reactions, Bayer's strain theory and its limitations, Ring strain in cyclopropane and cyclobutanes, Theory of stainless rings. The case of cyclopropane ring: banana bonds. Methods of formation alkyl halide, Mechanisms of nucleophilic substitution reactions of alkyl halides, substitution at the allylic and vinylic positions of alkenes, Mechanisms of elimination reactions of alkyl halides. Methods of formation of aryl halides, nuclear and side chain reactions. The addition-elimination and the elimination-addition, mechanisms of nucleophilic aromatic substitution reactions.	12	4
Module 4:: Alkenes, Cycloalkenes, Dienes and Alkynes	Hours	
Regio-selectivity: Saytzeff rule, Hoffmann elimination, physical properties and relative stabilities of alkenes. Chemical reactions of alkenes: hydroboration-oxidation, oxymercuration-reduction, Epoxidation, hydration, polymerization of alkenes, Substitution at the allylic and vinylic positions of alkenes. Cycloalkenes: conformation, synthesis, and chemical reactions. Dienes: nomenclature, isolated, conjugated and cumulated dienes: structure, method of formation, polymerization, chemical reaction-1,2 and 1,4 additions, diels-alder reaction. Alkynes: hydroboration-oxidation, metal-ammonia reductions, oxidation and polymerization	16	5,6

Mode of	Classroom activities: Recitation, Seminar, Quiz
Transaction	Field activities:
	Field activities.
	Lab-based activities:
Mode of	1. Continuous Internal Assessment (CIA)
Assessment	Internal Test

Assignment – Every student needs to write an assignment on a given topic based on the available published literature
2. Seminar Presentation – A topic needs to be presented and discussed with the class
3. Semester End Examination
4. Viva

1. Organic Chemistry by T. W. Graham Solomons, Craig B. Fryhle and Scott A. Snyder, Twelfth Edition, Wiley, 2016.

2. Advanced organic chemistry by J. March, 6th Ed.

3. Advanced organic chemistry part-A. F. A. Carey and R. J. Sundberg, 5th Ed. Springer (2007)

4. Organic Chemistry, J. Clayden, N. Greeves, S Warren, P. Wothers, Oxford University Press, Oxford, 2001

5. Principle of Organic Synthesis, Third Edition, Richard Norman and James M. Coxon.

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of understanding the structure, properties, and reactions of organic compounds and materials. Students can find jobs in Pharmaceuticals, Biochemistry, Environmental Science, Agricultural sector etc.

Perrit Sugertury	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Scienc	es	
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Spectroscopic Methods in Chemistry		
Course Type	Major		
Course Level	200-299		
Course Code	MG4DSCUCY203		
Course Overview	This course is designed at providing students with theoretical concepts of various spectroscopy, i.e., Atomic, Molecular, Vibrational, Raman, NMR, EPR, Mossbauer and electronic to analyses the molecular and electronic structure of atoms and molecules. Interaction of light with molecules, spectral transitions, and theoretical explanation of spectral data will be discussed. Students will be able to use quantum mechanics and group theory principles to understand molecular spectra; Also, they will be able to identify the relationship between molecular spectra and molecular properties which will helps the students to analyses the structure of atoms and molecules using spectroscopic methods.		
Semester	4	Credit	4
Total Student Learning Time	Instructional hours for theory 60		ctional hours for al/lab work/field work
Pre-requisite	Knowledge of Electromagnet Structure of atom	ic spectrum, Ba	asic Mathematics,

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand the fundamental principles of spectroscopy	R, U	
2	Understand the principle of magnetic resonance spectroscopy	R, U, A	
3	Analyse and interpret spectroscopic data	A, An	
4	Apply spectroscopic techniques to molecular structure determination	UAE	
5	Integrate spectroscopic and analytical techniques to solve problems	S	
6	Data analysis and interpretation	S	

COURSE CONTENT Module 1: Fundamentals of Spectroscopy	Hours	CO No
Introduction to Spectroscopy, Electromagnetic spectrum and its characteristics, intercation of electromagnetic radiation with matter (elastic and innelastic scattering) Origin of different spectra, intensity of absorption signal- to-noise ratio, natural line width, influencing factors spectral intensity-Transition Probability, Maxwell- Boltzmann Distribution, Collision broadening, Doppler broadening, Lamb dip spectrum, Beers-Lamberts law Born Oppenheimer approximation, energy dissipation from excited states, relaxation time.	20	1
Rotational Spectroscopy: Rigid rotor- Expression for energy- Selection rules- Intensities of spectral lines, Instrumentation Vibrational Spectroscopy: Simple harmonic oscillator - Energy levels -Force constant- Selection rules - Anharmonicity -Fundamental frequencies - Overtones – Fingerprint- Group frequency concept -Degree of freedom for polyatomic molecules -Modes of vibrations, Instrumentation		
Raman Spectroscopy: Basic principles -concept of polarizability- Qualitative treatment of pure rotational - Vibrational Raman spectra - Stokes & anti-stokes lines and their intensity difference - Selection rules - Mutual exclusion principle.		

Electronic Spectroscopy: Basic principles-Frank-Condon principle -Electronic transitions- Beer Lamberts law, - Chromophore and auxochrome- Bathochromic and hypsochromic shifts. Instrumentation Introduction to Moessbauer spectrsocopy		
Module 2: Magnetic Resonance Spectroscopy and Mass Spectroscopy	Hours	
 Nuclear Magnetic Resonance (NMR) Spectroscopy: Proton NMR & 13C NMR- Principle-Number and position of signals, Chemical shift, Different scales, Spin-spin coupling (qualitative concept). Instrumentation Electron Spin Resonance (ESR) Spectroscopy: Principle- Hyperfine structure, instrumentation Principles of mass spectrometry: Ion production methods: Electron ionization (EI), chemical ionization (CI), Soft ionization methods: SIMS, FAB, MALDI, and DI; electron spray ionization (ESI). 	20	2,3
Module 3: Instrumental Methods of Analysis	Hours	
Principle, and applications of following spectrophotometers - Atomic Absorption Spectroscopy (AAS), Flame Emission Spectroscopy -Colorimetry -Spectrophotometry, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC)	12	4
Module 4: Introduction to structure elucidation	Hours	
Overview of structure elucidation, Identification of structures of organic and inorganic compound based on the data UV-Vis, IR, 1H NMR, 13C NMR, EPR, and Mass spectroscopy.	8	5,6

Mode of TransactionClassroom activities: Recitation, Seminar, Quiz		
	Field activities:	
	Lab-based activities:	
Mode of Assessment	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 	

2. Seminar Presentation – A topic needs to be presented and discussed with the class
3. Semester End Examination
4. Viva

- 1) C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy.
- 2) W. Kemp, Organic Spectroscopy.
- 3) R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectroscopic Identification of Organic Compounds, Wiley.

Relevance of Learning the Course/ Employability of the Course

It is highly relevant due to its broad range of applications and the critical skills it imparts. Students can find jobs in healthcare and medicine, environmental protection, food and agriculture, forensics, industry and manufacturing.

Perrit Sugertury	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Scienc	es	
Programme	4 + 1 Integrated UG and PC	Programme	
Course Title	Analytical Chemistry		
Course Type	Minor		
Course Level	200-299		
Course Code	MG4DSCUCH221		
Course Overview	This course is designed at providing students with theoretical concepts of various spectroscopy, i.e., Atomic, Molecular, Vibrational, Raman, NMR, EPR, Mossbauer and electronic to analyses the molecular and electronic structure of atoms and molecules. Interaction of light with molecules, spectral transitions, and theoretical explanation of spectral data will be discussed. Students will be able to use quantum mechanics and group theory principles to understand molecular spectra; Also, they will be able to identify the relationship between molecular spectra and molecular properties which will helps the students to analyses the structure of atoms and molecules using spectroscopic methods.		
Semester	4	Credit	4
Total Student Learning Time	Instructional hours for theory 60		ctional hours for al/lab work/field work
Pre-requisite	Knowledge of Electromagnet Structure of atom	ic spectrum, Ba	asic Mathematics,

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	Understand the fundamental principles of spectroscopy	R, U	
2	Understand the principle of magnetic resonance spectroscopy	R, U, A	
3	Analyse and interpret spectroscopic data	A, An	
4	Apply spectroscopic techniques to molecular structure determination	UAE	
5	Integrate spectroscopic and analytical techniques to solve problems	S	
6	Data analysis and interpretation	S	

Module 1:Fundamentals of Spectroscopy	Hours	CO No
Introduction to Spectroscopy, Electromagnetic spectrum and its characteristics, intercation of electromagnetic radiation with matter (elastic and innelastic scattering) Origin of different spectra, intensity of absorption signal- to-noise ratio, natural line width, influencing factors spectral intensity-Transition Probability, Maxwell- Boltzmann Distribution, Collision broadening, Doppler broadening, Lamb dip spectrum, Beers-Lamberts law Born Oppenheimer approximation, energy dissipation from excited states, relaxation time.	16	1
Rotational Spectroscopy: Rigid rotor- Expression for energy- Selection rules- Intensities of spectral lines, Instrumentation Vibrational Spectroscopy: Simple harmonic oscillator - Energy levels -Force constant- Selection rules - Anharmonicity -Fundamental frequencies - Overtones – Fingerprint- Group frequency concept -Degree of freedom for polyatomic molecules -Modes of vibrations, Instrumentation Raman Spectroscopy: Basic principles -concept of polarizability- Qualitative treatment of pure rotational - Vibrational Raman spectra - Stokes & anti-stokes lines and their intensity difference - Selection rules - Mutual exclusion principle.		

	2,3
Hours	
12	4
	-
	Hours 16 Hours

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz	
	Field activities:	
	Lab-based activities:	
Mode of Assessment	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 	

2. Seminar Presentation – A topic needs to be presented and discussed with the class
3. Semester End Examination
4. Viva

- 1) C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy.
- 2) W. Kemp, Organic Spectroscopy.
- 3) R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectroscopic Identification of Organic Compounds, Wiley.

Relevance of Learning the Course/ Employability of the Course

It is highly relevant due to its broad range of applications and the critical skills it imparts. Students can find jobs in healthcare and medicine, environmental protection, food and agriculture, forensics, industry and manufacturing

Pierri Srgring-T	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Science	ces		
Programme	4 + 1 Integrated UG and P	G Prog	gramme	
Course Title	Basic Computation Skills	for Sci	ience	
Course Type	SEC			
Course Level	200-299			
Course Code	MG4SECUCH201	H201		
Course Overview	Develop skills in using compresenting data and to solve	-		
Semester	3	Cred	it	3
Total Student Learning Time	Instructional hours for theory 15			ctional hours for al/lab work/field work
Pre-requisite	Knowledge to operate comp	uter		

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be		
	able to;		
1	Learn how to write and format research	UAC, S	
	manuscript		

2	Learn to create and present high quality slides and graphs	UACS
3	Understand how to effectively use software tools to analyse scientific data	A, An
4	Sort and arrange literature database	UAS
5	Extract, analyse and compare scientific database	C, An E
6	Learn about ethics in data analysis	R, A

Module 1:Preparation of manuscript and presentation	Hours	CO No
Preparation of manuscript: Effectively use tables, numbering and bulleting, equations, table of contents, and references. Mathematical functions, Statistical functions, Calculations, Sort and Filtering, Conditional Formatting, High-Quality data presentation (Graphs and Chart), Creating slides, presentation and animations	15	1
Module 2: Scientific data reduction and analytic software	Hours	
ChemDraw: Molecular Visualization, MestReNova: NMR data analysis, Diamond: Crystal Structure Visualization, Fullprof for Rietveld refinement	15	2,3
Module 3: Scientific and Literature Database	Hours	
ICSD for generating Crystallographic information files, IR, UV, NMR, and Mass database. Endnote, Mendeley and Zotero, Ethics in data analysis	10	4

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz	
	Field activities:	
	Lab-based activities:	
Mode of Assessment	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature 	

2. Seminar Presentation – A topic needs to be presented and discussed with the class
3. Semester End Examination
4. Viva

- 1) https://endnote.com/?srsltid=AfmBOopWWs3Ju0q_5jBfYsX3l6dK1teHEAyv XBia5OGAf8AXxlxe0mJR
- 2) https://www.zotero.org/
- 3) MS Office
- 4) https://mestrelab.com/
- 5) https://www.ill.eu/sites/fullprof/
- 6) https://revvitysignals.com/products/research/chemdraw

Relevance of Learning the Course/ Employability of the Course

Computational skills are applicable across various industries such as biotechnology, pharmaceuticals, environmental science, and IT. With the growing reliance on digital literacy, a strong foundation in computational competency ensures better job readiness

Pierri Srgring-T	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	School of Chemical Sciences			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Sustainable Chemical approaches			
Course Type	VAC			
Course Level	200-299			
Course Code	MG4VACUCH201			
Course	The course highlights the role of sustainable chemistry in			
Overview	addressing global environmental issues			
Semester	4	Cred	lit	3
	Instructional hours for		Instruc	ctional hours for
	theory		practic	al/lab work/field
Total Student			work	
Learning Time				
_	45			
Pre-requisite	Basic Chemistry and Gener	al Kno	nowledge about environmental	
•	issues			

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be able to ;	-	

1	Understanding of green chemistry principles	R, U
2	Analysis of chemical reactions and process. Awareness of environmental impact	A, An
3	Design of sustainable chemical process	S
4	Understand the principles of water and soil sustainability.	U
5	Explore solutions for sustainable water and soil management.	A, An
6	Develop skills to select appropriate recycling methods.	S

Module 1: Green Chemistry	Hours	CO No
Introduction to Green Chemistry: Definition, Principle, History and Development of Green Chemistry. Green Solvents and reaction conditions: Alternative Solvents, Solvent-free reactions, Microwave-assisted reactions, Ultrasound-assisted reactions. Green Catalysis: Homogeneous and Heterogeneous Catalysis, Biocatalysis, Nanocatalysis. Green Chemistry in Industry. Green Chemistry and Sustainable Development: SDGs, climate change, water conservation and waste management.	15	1
Module 2: Water and Soil	Hours	
Importance of water and soil sustainability, water and soil use and conservation techniques, water pollution and treatment methods, soil composition and classification, soil fertility and nutrient cycling, Real-world examples of successful water and soil sustainability projects, climate change and its impact on water and soil, Industrial impact on water and soil	15	2,3
Module 3: Plastic recycling	Hours	
Types of plastic waste and its economic and environmental impact, Sources of plastic waste, plastic cycle and waste management, Recycling methods, plastic reducing strategies, reuse strategies, recovery methods, impact of recycling on the environment, polymer degradation and sustainability	15	4

Mode of Transaction	Classroom activities: Recitation, Seminar, Quiz Field activities: Lab-based activities:
Mode of Assessment	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature Seminar Presentation – A topic needs to be presented and discussed with the class Semester End Examination Viva

- 1) Green Chemistry: Theory and Practice, Paul T Anastas
- 2) Soil And Water Conservation Engineering, Suresh
- 3) Understanding Plastics Recycling: Economic, Ecological, and Technical Aspects of Plastic Waste Handling, Natalie Rudolp
- 4) Recycling of Polymers: Methods, Characterization and Applications. (2016). Germany: Wiley.
- 5) Rudolph, N., Kiesel, R., Aumnate, C. (2020). Understanding Plastics Recycling: Economic, Ecological, and Technical Aspects of Plastic Waste Handling. Germany: Carl Hanser Verlag GmbH & Company KG.
- 6) Frontiers in the Science and Technology of Polymer Recycling. (2013). Netherlands: Springer Netherlands.
- 7) Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions. (2020). Netherlands: Academic Press.

Relevance of Learning the Course/ Employability of the Course

It is very relevant in terms of practical application and quality control-related jobs. This course provides the fundamental knowledge which is necessary to understand the formation of substance, the nature of the substance etc.